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Abstract

We present a detailed analysis of the Sint-800 virtual axial dipole moment (VADM) data in terms of anαΩ mean field
model of the geodynamo that features a non-steady generation of poloidal from toroidal magnetic field. The result is a variable
excitation of the dipole mode and the overtones, and there are occasional dipole reversals. The model permits a theoretical eval-
uation of the statistical properties of the dipole mode. We show that the model correctly predicts the distribution of the VADM
and the autocorrelation function inferred from the Sint-800 data. The autocorrelation technique allows us to determine the
turbulent diffusion timeτd = R2/β of the geodynamo. We find thatτd is about 10–15 kyr. The model is able to reproduce
the observed secular variation of the dipole mode, and the mean time between successive dipole reversals. On the other hand,
the duration of a reversal is a factor∼2 too long. This could be due to imperfections in the model or to unknown systematics in
the Sint-800 data. The use of mean field theory is shown to be selfconsistent. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Paleomagnetic measurements have shown that the
geomagnetic field has always been approximately
dipolar and aligned with the axis of rotation. The ax-
ial dipole has reversed its direction many times in the
past. These reversals are fast events lasting� 10 kyr,
and the intervalsTr between reversals have a Poisson
distribution∝ exp(Tr/〈Tr〉). The mean time between
reversals〈Tr〉 has decreased from∼107 years in the
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Cretaceous to about(2–3)×105 years during the past
10 Myr (Merrill et al., 1996; Valet and Meynadier,
1993). On shorter time scales the dipole amplitude
fluctuates considerably around its mean value, see
Fig. 1. This Sint-800 record of Guyodo and Valet
(1999) contains detailed information on the recent be-
haviour of the axial dipole field, and will be analysed
in this paper.

The magnetic field is generated by a dynamo
located in the liquid outer core. Several groups have
performed three-dimensional simulations of the com-
plex hydromagnetic interactions involved in dynamo
action (Glatzmaier and Roberts, 1995a,b; Kageyama
and Sato, 1997; Kuang and Bloxham, 1997; Olson
et al., 1999; Glatzmaier et al., 1999; Christensen et al.,
1999). The breakthrough has come about through ad-
vances in computer technology and the low magnetic
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Fig. 1. The virtual akial dipole moment (VADM) of the geomag-
netic field of the past 800 kiloyears, referred to as the Sint-800
record, taken from Guyodo and Valet (1999). There is one data
point per 1000 yr, time is running from right to left, and we have
allowed for the known reversal att = 780 kyr. The errors in the
individual VADM data are of the order of 10%, and the secular
dipole variationdv defined in (12) is 0.071± 0.003.

Reynolds number of the outer core. The simulations
indicate that self-sustained dynamo action is able to
overcome the resistive decay of the currents. And they
exhibit the observed properties of the geomagnetic
field: largely dipolar withB 
 0.5 G at the surface,
sudden reversals and rapid variability in between.
These simulations are suggestive, but unfortunately
still far away from the correct parameter regime.
The Ekman number, for example (ratio of viscous to
Coriolis forces), is believed to beE ∼ 10−15, but the
simulations can handle onlyE ∼ 10−6. It is therefore
not clear to what extent they are representative of the
geomagnetic field (see Zhang and Schubert, 2000).

Because of this and because the simulations are ex-
tremely demanding in terms of computing resources,
there is a need for models that explain the dynamo pro-
cess in simple physical terms, while being at the same
time sufficiently rich to permit a meaningful compari-
son with the observations. There are many models that
reproduce the observationsqualitatively(e.g. Mazaud
and Laj, 1989; Narteau et al., 2000), but aquantitative
comparison of the predictions of models with the ob-
served properties of the geodynamo has received little
attention. The aim of the present paper is to bridge
this gap.

We have developed a mean field model that is able to
explain the observed statistical properties of the axial
geomagnetic dipole field (Hoyng et al., 2001; Schmitt

Fig. 2. We employ anαΩ mean field model with a stationary
fundamental mode of dipolar type (heavy lines). Differential ro-
tation generates new poloidal field from toroidal field, and the
α-effect associated with the helical convection makes new poloidal
field from the toroidal field. All variability, including reversals are
produced by random irregularities in theα-effect, schematically
indicated by the dashed loop having the wrong orientation.

et al., 2001),2 see Fig. 2. On general grounds we as-
sume that the geodynamo is of theαΩ type (see also
Richards, 2000). We assume further that the regenera-
tion of poloidal from toroidal magnetic field by the he-
lical convection is non-steady on the fast eddy turnover
time scaleτc. As a result, the dynamo becomes vari-
able, overtones are excited and there are occasional
reversals. This is an old idea that goes back to Parker
(1969). Because the observed distribution of the inter-
vals between reversals is Poissonian, it seems almost
unavoidable that reversals are induced by some kind of
rapid variability. Parker (1969) and Levy (1972) con-
sidered a burst in helicity, immediately followed by a
jump in the mean flow. Olson et al. (1983) found re-
versals due to jumps in theα-effect and Narteau et al.
(2000) due to a steady level of helicity fluctuations.

The key elements of our model are (1) we consider a
stationary level of random fluctuations in theα-effect
over very long times, and (2) the statistical properties
of the dipole amplitude are evaluated numerically and
theoretically, with the help of a Fokker–Planck equa-
tion. This has the advantage that the physics of the
model is well understood. In the present paper, we in-
vestigate how far we can bring our model to agree with
the Sint-800 data. The main features of the model are

2 Henceforth Hoyng et al. (2001) is referred to as HOS, Schmitt
et al. (2001) as SOH.
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summarised in Sections 2 and 3, and in the following
sections we study the amplitude distribution and the
autocorrelation function of the Sint-800 data.

2. Introducing the model

Our basis is the equation for the mean field (Moffatt,
1978; Krause and Rädler, 1980):

∂〈B〉
∂t

= ∇ × [vx + α − (β + η)∇×]〈B〉. (1)

The mean〈·〉 is interpreted as an azimuthal average,
so that the mean field〈B〉 is the axisymmetric compo-
nent ofB. The mean flow is written asv = Ω × r =
Ωr sinθ eϕ and dΩ/dr is taken constant. The coef-
ficient of turbulent diffusionβ is also regarded as a
constant, and much larger than the molecular resis-
tivity η. The applicability of mean field theory to the
geodynamo is discussed in Section 7. The radial de-
pendence of the field is modeled as a spherical wave
∝ exp(ikr)/kr, so that 1/k is a measure of the radial
length scale of the field. This has the effect thatr
becomes a parameter, that we set equal to a represen-
tative radial positionR. This one-dimensional model
catches the dynamo action at that positionR in the
outer core, with crude allowance for radial turbulent
diffusion. The coordinates are timet and colatitude
θ . Further details may be found in HOS.

Much of the new physics of the model derives from
our treatment of the dynamo coefficientα, which con-
sists of a steady or mean part∝ cosθ and a rapidly
fluctuating partδα:

α = αm(1 − q) cosθ + δα(θ, τ ). (2)

The backreaction of the magnetic field on the flow is
allowed for by takingq ∝ a2

0 wherea0 is the amplitude
of the fundamental mode. In this way the steady part
of α is a decreasing function of the energy of the fun-
damental mode (which is approximately the total mag-
netic energy). This is known as globalα-quenching
(Brandenburg et al., 1989).

The dynamo coefficientα is an average over the tur-
bulent flowu superposed onv. The helical convection
at radial positionR is assumed to consist of cells with
angular sizeπ/Nc homogeneously distributed over the
sphere, 4N2

c /π in total. Each cell contributes toα a
non-zero mean partαm(1− q) cosθ and a fluctuating

part ∝ fF. The constantf gauges the strength of the
fluctuations, andF is a random function of position
and time with zero mean and unit variance. On taking
the azimuthal average, we arrive at (2) with

δα ∝ fF(θ, τ )√
2Nc sinθ

, (3)

since the random contribution∝ fF per cell is reduced
by a factorN−1/2, whereN = 2Nc sinθ is the number
of cells on a circle of constant latitude, andF in (3) is
updated every turnover timeτc, independently in each
latitude interval�θ = π/Nc. In principle,β should
also have a fluctuating part, but the fluctuations are
believed to be less important forβ, which is therefore
regarded as a constant. Our convection model is much
simpler than the model of Narteau et al. (2000). We can
afford that because the emerging statistical properties
of 〈B〉 depend only very weakly on the details of the
turbulence model.

We tookδα to vary independently in each latitude
interval because that facilitated the theoretical analysis
in HOS. But this is not essential, nor is the scaling
∝ (sinθ)−1/2 (i.e. increasing towards the poles), or
the precise functional form of theα-quenching. We
argue in Section 3 that any kind of ‘rapid rattling’
inside the core is likely to induce a similar behaviour
of variability and reversals.

The model is controlled by three parameters.
Dimensionless time is defined byτ = t/τd, i.e. time
is measured in units of the turbulent diffusion time
τd = R2/β. In the absence of fluctuations there are
two free parameters:kRand the dynamo numberCm:

Cm = αmR
4

β2

dΩ

dr
. (4)

To simulate the geodynamo the fundamental mode of
Eq. (1) must be a non-periodic dipole. This restricts
the parameters to 0< kR < 1 andCm > 0. Apart
from these two, the statistical properties of the model
depend only on one third parameter,f 2τc/N

2
c .

The applicability of our model to more general
cases, for example two-dimensional models with an
independent radial coordinate, requires that they also
have a stationary fundamental mode. This is not imme-
diately obvious and we defer this point to Section 7.
Dynamos with a periodic fundamental mode, inci-
dentally, react in a different way. The fluctuations
generate correlated jumps in the phase and amplitude
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Fig. 3. Numerical solution showing the toroidal field at a representative radial positionR in the outer core (top), and the normalised
amplitudea(τ) of the fundamental mode (bottom). The fundamental mode is referred to as the ‘dipole mode’ because its poloidal field looks
like an exact dipole. The dipole mode is linearly unstable for smalla, the overtones are damped but transiently excited. The simulation was
5 × 104τd long, and had 88 reversals, hence a mean reversal time〈Tr〉 = 570± 61. The secular dipole variation (12) isdv = 0.070. This
run has the same parameters as run #2 of HOS:kR= 0.5, Cm = 100,Λ = 0.527, f 2τc/N

2
c = 1.46× 10−2 (f = 5.4, τc = 0.05, Nc = 10)

and timestep�τ = 0.01.

of the dynamo. This has been used to explain the
observed phase–amplitude correlation of the solar
cycle (Ossendrijver et al., 1996; Hoyng, 1993, 1996).

3. The bistable oscillator picture

A numerical solution shows a predominantly dipo-
lar field of varying amplitude with fine structure due
to excited overtones, see Fig. 3. This run is reproduced
here because it had been found to correspond closely
to the Sint-800 data (cf. HOS; SOH). A major advan-
tage of a one-dimensional model is that its properties
may be conveniently determined numerically since
long runs (e.g. 105τd) can be performed in a short
time. However, it is also possible to analyse the statis-
tical properties of such dynamos (regardless of their
dimensionality). The field is expanded in eigenmodes
of the unperturbed dynamo equation at marginal exci-
tation (eigenvaluesλi ; λ0 = 0, Reλi < 0 for i ≥ 1),
and by standard techniques, we obtain3

dai
dτ

= λiai + (1 − a2
0)Eikak + Vik(τ )ak. (5)

3 Summation over doublelower indices; the factors from HOS
has been absorbed inEik.

The amplitudeai of mode i is normalised to the
amplitudea0 of the dipole mode in non-linear equi-
librium. The first term on the right gives the linear
evolution, the second the supercritical excitation and
the α-quenching, and the third term describes the
fluctuations inα that cause all variability;Eik andVik
are overlap integrals of eigenmodesi andk.

By averaging the coupled mode Eq. (5) over the
fluctuations the following equation can be derived for
the probability distributionp(a, τ ) of the amplitudea
of the dipole mode:

∂p

∂τ
= − ∂

∂a
Sp+ 1

2

∂2

∂a2
Dp, a ≡ a0. (6)

This Fokker–Planck equation is a kind of diffusion
equation for the evolution of the probability distribu-
tion in terms of the drift and diffusion coefficientsS
andD, and it is perhaps intuitively clear that such an
equation forp should exist. PresentlyS andD are
given by

S 
 Λ(1 − a2)a + correction term,

D 
 ∆0a
2 +∆1, (7)

whereΛ is the linear growth rate of the fundamental
mode at small amplitude (a � 1). For the correction
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term in (7) we refer to the Appendix A. The constants
∆0 and∆1 are functions of the model parameterskR,
Cm and f 2τc/N

2
c , but the functional dependence is

unfortunately unknown.
There exists a large body of literature on the

Fokker–Planck equation (see Van Kampen, 1992),
and this allows us to draw the following analogy.
Eq. (6) is identical to the Fokker–Planck equation
of a strongly damped, randomly forced particle in a
bistable potential wellU(a) with −dU/da = S or,
ignoring the correction term:

U 
 1
4Λ(1 − a2)2. (8)

This particle-in-well paradigm is helpful to understand
the physics of the geodynamo, see Fig. 4. The wells
represent the normal and reversed polarity state. The
particle resides in a well, performing a random motion
near the bottom around the stable equilibrium, with
occasional jumps to the other side (a reversal). The ori-
gin is the non-steady helical convection that amplifies
the poloidal field in an irregular fashion, see Fig. 2.

The Parker–Levy reversal mechanism relies on a
combination of a single cyclonic convection event, fol-
lowed by a single jump in the mean flow. Provided that
certain geometrical relations are satisfied a reversal
may follow (Gibbons, 1998). Our model operates with
a continuous level of randomα fluctuations. Overtones
are excited because the time scale of the fluctuations
(the eddy turnover timeτc) is much shorter thanτd.
However, most fluctuations do not result in a reversal.

Fig. 4. The amplitude of the dipole mode behaves as the po-
sition of a randomly forced particle in a bistable potential
U(a) = (1/4)Λ(1− a2)2. The particle is strongly damped so that
the velocity da/dτ is proportional to the force−dU/da.

Reversals are rare because it takes a long time before
chanceproduces an appropriate sequence ofα fluctua-
tions to bring about an overall sign change of the field
(i.e. to push the particle to the other well in Fig. 4). In
this picture reversals are a random process without a
clearly identifiable cause, like radioactive decay, and
analysis of a single event as in the Parker–Levy mecha-
nism becomes meaningless. The statistical analysis of
HOS yields the remarkable result that reversals must
occur as soon as overtones are excited. The proof is
general, and does not depend on the geometry of the
overtone fields, nor on their eigenvalues, nor on the
dimensionality of the dynamo. The mean reversal rate
depends on an overlap integral of the poloidal field
of the fundamental mode and the rms toroidal over-
tone field, which is reminiscent of the Parker–Levy
mechanism. Since any kind of ‘rapid rattling’ will ex-
cite overtones, it is likely to produce reversals as well,
but this has not been proven. It can further be shown
that reversals are necessarily fast events lasting about
a turbulent diffusion timeτd. For details on all matters
raised in this section we refer to HOS.

Eq. (6) determines all statistical properties of the
dipole mode. The stationary solution is:

p(a) ∝ 1

D
exp

(∫ a

0

2S

D
da′

)
, (9)

which reduces to

p(a) ∝
(

1 + a2

c2

)γ c2+γ−1

exp(−γ a2), (10)

if the correction term in (7) is ignored. This is the
theoretical distribution of the dipole amplitude in its
simplest form. It has two peaks neara = ±1 where
most of the probability is concentrated, see Fig. 4.
A better approximation to (10) is considered in the
Appendix A. The parametersγ andc2 are dimension-
less measures ofU(0) andD(0):

γ = Λ

∆0
, c2 = ∆1

∆0
. (11)

3.1. Status

Expression (10) is very useful as it allows us to
evaluate many statistical properties of the dipole mode
theoretically. So far we have studied the mean time
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between reversals〈Tr〉, and what we refer to as the
‘secular dipole variation’dv:

dv = 〈(|a| − 〈|a|〉)2〉
〈|a|〉2

, (12)

i.e. the variance of the dipole amplitude relative to its
mean value. Note that〈|a|〉 = ∫ ∞

0 ap(a)da/
∫ ∞

0 p(a)

da, etc. Since the dipole mode amplitudea is pro-
portional to the virtual axial dipole moment (VADM)
within the accuracy of the Sint-800 data (Section 4.1),
we can compare (10) and (12) both with the Sint-800
data and with simulation dataa(τ). Other properties
such as the relative fraction of time the dipole mode
is below a certain threshold value, the frequency of
excursions of a given magnitude, etc., may also be
computed but have not yet been considered. The main
results of HOS and SOH are:

(1) The Sint-800 data are well described by the theo-
retical distribution (10), which in turn is a reason-
able approximation the numerical dataa(τ). The
required fluctuations are large,δαrms/〈α〉 ∼ 2.5,
and the distribution of the chron lengths (intervals
between successive reversals) is Poissonian.

(2) The observations indicate a negative trend be-
tween the secular variationdv and〈Tr〉 (McFadden
and Merrill, 1995), and the model provides a sim-
ple explanation: if the forcing is increased then
the particle in Fig. 4 will oscillate in the well with
larger amplitude (dv ↑) but it will also jump more
often to the other side (〈Tr〉 ↓). The value of〈Tr〉
depends exponentially on the forcing parameter

Fig. 5. The distibution of the VADM of the geodynamo according to the Sint-800 data (799 data points). Left: the data binned in 50 bins
all having the same number of data points. Right: binning on a 30 point equidistant grid. The secular dipole variationdv computed from
the Sint-800 data is 0.071± 0.003.

f 2τc/N
2
c which is free, but also determinesdv. If

we require that〈Tr〉 ∼ 3×105 yrs, a typical value
for the past few Myr, thendv 
 0.15, which is
about the observed value in that period.

A systematic comparison of the model with the
observations had not yet been undertaken. This is the
subject of the following sections, where we shall in-
vestigate how far we can push the agreement between
the model and the Sint-800 data, starting from the run
shown in Fig. 3.

4. The distribution of the dipole amplitude

The dipole amplitude distribution of the geodynamo
follows by binning the Sint-800 data. The result de-
pends strongly on the binning method, Fig. 5. There
appear to be systematic effects in the data as values
around 4,5 and 6× 1022 A m2 seem to be overabun-
dant. The origin of these peaks is unclear (Guyodo,
private communication), but important for our work
is that they are not really significant. The 1σ uncer-
taintiesei in each of the 799 Sint-800 data pointsi
are known (Guyodo and Valet, 1999), and as a rule
ei/si ∼ 0.1. Hence, theei are much larger than the
binwidth. It follows that the 1σ uncertainty in the num-
ber of data pointsnj in each binj is roughly the Pois-

son valuen1/2
j . This implies a constantrelative error

of n−1/2
j = (799/50)−1/2 ∼= 25% in each individual

bin level of Fig. 5, left, about as large as the peaks.
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4.1. Fitting like to like

A few remarks on what is fitted to what are in or-
der. The Sint-800 VADM data refer to the2 = 1,m =
0 component of the poloidal part of the geomagnetic
surface field. Each eigenmodei of Eq. (1) has a fixed
spatial structure of poloidal and toroidal components
which is multiplied with the time-dependent coeffi-
cientai . All eigenmodes havem = 0 (axisymmetry).
The fundamental mode is antisymmetric with respect
to the equator, and is called the ‘dipole mode’ because
it has a dominant2 = 1 contribution and progres-
sively smaller2 = 3,5, . . . elements. The first over-
tone is symmetric (quadrupolar) and has only even-2

contributions. The second overtone is again antisym-
metric (octupolar) and has still a sizable2 = 1 con-
tribution, but its mode amplitudea2 is much smaller
thana0. It follows that the VADM is proportional to a
linear combination ofa0, a2, a4, . . . with a dominant
a0-term. The error induced by omitting the overtones
is estimated to be of the order of 10% (SOH), about
as large as the error in the individual Sint-800 data.
For that reason we feel justified to fit the Sint-800 data
directly toa0 (denoted asa).

The reader is alerted to the fact that we make two
comparisons at the same time: one between the the-
oretical analysis and the model simulations (can we
trust our theoretical analysis?), and one between the
theoretical predictions and the Sint-800 data (does the
model describe the data?). Direct fitting of simulation
data to Sint-800 data is not very practical.

4.2. Optimal fit to the Sint-800 data

Fitting p(a) from (10) to binned Sint-800 data pro-
ceeds as follows. Let the centroids of the bins be

Table 1
Fitting parameters

Case Type of fit γ c2 Am (1022 A m2) χ2 (σ )a 〈Tr〉b (τd) dvc Figure

1 (10) to Sint-800 6.3 0.32 5.98 1 1090 0.076 –
2 (10) to a(τ) of Fig. 3 8 0.50 6.07 1.3 928 0.070 –
3 (10) to both 7 0.45 6.04 1.1 665 0.079 6a
4 (A.1) to both 4.8 0.22 6.14 1.4 1097 0.071 6b
5 As 4 buta(τ) of Fig. 8 5 0.50 6.10 5 138 0.091 9

a Of fit of (10) or (A.1) to Sint-800 data. Quoted here and elsewhere is the value of|χ2 − ν|/(2ν)1/2 whereν is the effective number
of degrees of freedom.

b From relation (A.2).
c Computed with (12), and (10) or (A.1).

located atAj , and letwj and nj be the width and
number of data points in binj . We choose values
for the constantsγ and c2 and for the positionAm
where the VADM distribution attains its maximum.
Since the maximum ofp(a) of (10) is located atam =
(1 − 1/γ )1/2, VADM valuesA should be rescaled as
a = (A/Am)(1 − 1/γ )1/2. We fix the normalisation
factor N of p(a) by N

∑
j pjwj = 799, wherepj

is the value ofp at aj = (Aj/Am)(1 − 1/γ )1/2. The
goodness of fit is inferred fromχ2 = ∑

j (Npjwj −
nj )

2/nj . The procedure may then be repeated for an-
other set of values forγ, c2 andAm until χ2 reaches
a minimum. To avoid problems with a small or zero
number of data pointsnj we use a variable binwidth
as in Fig. 5 (left), and a large number of bins, typically
100. The optimal fit of (10) to the Sint-800 data thus
obtained had aχ2 corresponding to 1σ , see Table 1,
case 1.

4.3. Best fit to the simulation data

The next step would be to do a simulation with the
parameters just found from the fit to the Sint-800 data,
but that is not as simple as it may seem. A minor
problem is that two numbers (γ andc2) is not enough
to infer three model parameterskR, Cm andf 2τc/N

2
c ,

since that could be eliminated by including additional
information (e.g. on the mean time between reversals).
The real snag is that we have no useful expressions
for γ and c2 in terms of the model parameters, as
explained in HOS.

Since the simulation of Fig. 3 had been found to
correspond closely to the Sint-800 data, we address
a simpler question first: what are its values ofγ and
c2? Again, there is no straightforward answer. In
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Fig. 6. (a) Left column: fit of the theoretical distribution (10) to the Sint-800 data with 1σ error bars (top panel), and to the numerical
amplitudesa of Fig. 3 (bottom panel). (b) Right column: same figure, except that the improved expression (A.1) forp(a) is used. In each
figure (a) and (b), the horizontal axes have been scaled so that the twop(a) curves coincide.

Section 5.1 of HOS an elaborate fitting method was
used, but a more obvious method is to fit (10) to the
numerical dataa(τ). Since we know that the maximum
of histogrammed numerical amplitudesa is located
at (1 − 1/γ )1/2 we have a two instead of the three
parameter fit of Section 4.2. The result is shown in
Table 1, case 2.4 With theseγ andc2 as constraints
(i.e. optimising only forAm and the normalisation)
we find the best fit to the Sint-800 data, which has a
χ2 corresponding to 1.3σ , see Table 1, which is quite
acceptable.

Apparently, a wide range of parameter values is
consistent with the Sint-800 data, among which those
of Fig. 3. This suggests that the fits are insensitive to
the value ofγ and/orc2, which seems surprising. In
fact, the fits are quite sensitive to changes in eitherγ

or c2, but there is a kind of degeneracy, in that the

4 The minimumχ2 of this fit is manyσ large, so that the distri-
bution of the simulation dataa(τ) deviates formally significantly
from (10). The origin is that smallsystematicdifferences between
the theory and the simulations (always present at some level) are
beginning to show up, due to the fact that the fit employs so many
data points (5× 104). In that case theχ2-test will break down.

effect of an increase inγ on the shape ofp(a)may be
largely offset by also increasingc2. This is visible in
Table 1, cases 1–4 wherec2 is seen to increase withγ .

4.4. Compromises and improvements

Now that we have optimal fits of (10) to Sint-800
and simulation data separately, we seek a compro-
mise to represent both. As we have just seen there
is quite some leeway for that. The result is shown in
Fig. 6a, and Table 1, case 3. We simply adopted the
listed values ofγ andc2, in between those of the two
optimal fits. Then we determine the best fit of (10)
to the Sint-800 data (by adaptingAm and the nor-
malisation), which hadχ2 ∼= 1.1σ (top panel). The
bottom panel compares the simulation data with (10)
for these values ofγ andc2.

It is possible to improve the statistical theory by
including the next correction in expression (7) for
S, see Appendix A. The fit is shown in Fig. 6b and
Table 1, case 4. Here, too, the values ofγ and c2

have been selected in between those of the optimal
fits of (A.1) to the Sint-800 and the simulation data.
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The representation of the numerical results has im-
proved visibly, while that of the Sint-800 data is not
significantly worse (χ2 ∼= 1.4σ ).

It seems that we may conclude that the Sint-800
data, our simulations of Fig. 3 and the theory are in
good agreement with one another. The theoretical val-
ues for the ‘secular dipole variation’dv from Table 1
match well with the value 0.070 of the simulation of
Fig. 3 and with that of the Sint-800 data, which is
dv = 0.071± 0.003. This uncertainty of 0.003 has
been computed by generating sets of artificial Sint-800
data, by replacing each data pointsi by si+eiN(0,1),
whereei are the known errors andN(0,1) indepen-
dent draws from a normal distribution of zero mean
and unit variance.

4.5. Time scales

So far we have looked only at shapes of distribution
functions. We shall now consider the mean time〈Tr〉
between reversals and the duration of reversals, and at
this point a few problems appear. There is a discrep-
ancy between the value of〈Tr〉 = 570± 61 measured
in the simulations of Fig. 3 and the theoretical val-
ues listed in Table 1. The latter are almost a factor 2
larger, except for the one of case 3. We impute this to
the fact that relation (A.2) is only approximate, as ex-
plained in HOS. In other words, we do not regard this
as a serious problem as long as we have no accurate
theoretical expression for〈Tr〉.

The question of the current value of〈Tr〉 is trickier.
There has been one reversal in the period covered by
the Sint-800 data, and with that information we can
only compute the 95% confidence interval: 220 kyr<
〈Tr〉 < 3.3 Myr. In HOS we concluded thatτd ∼ 3 kyr
so the measured value of(570± 61)τd implies that
〈Tr〉 = 1.5 − 1.9 Myr, well inside the confidence in-
terval. This approach may seem contrived, since we
may narrow down〈Tr〉 by extending the time period:
The mean reversal time was(2–3)× 105 years in the
past 10 Myr (Merrill et al., 1996; Valet and Meynadier,
1993). But for consistency it is important that the anal-
ysis of the dipole variability and the mean reversal rate
refer to one and the same period, for which we have
chosen the past 800 kyr of the Sint-800 data.

But there is more. The Sint-800 data actually per-
mits us tomeasureτd, and the result is thatτd is
∼11 kyr rather than 3 kyr, so that〈Tr〉 is about 6 Myr,

hence outside the 95% confidence interval. We return
to this issue after the next section where we illustrate
how τd may be determined. Finally, theduration of
a reversal is(0.5–2)τd in our model, which would
correspond to 5–20 kyr. This is a little long but still
acceptable.

5. The turbulent diffusion time of
the geodynamo

The turbulent diffusion timeτd = R2/β of the geo-
dynamo is poorly known. This is in contrast with the
solar dynamo, and the reason is that the solar dynamo
is periodic. In that case there are two expressions, one
for the period,P 
 (α dΩ/dr)−1/2 in its simplest
form, and one for the dynamo number (4). The pe-
riod andR are known, andCm and dΩ/dr are also
known within the model context. Henceα, β andτd
may be determined, at least to order of magnitude. But
the geodynamo is not periodic, and only one combi-
nation of parameters (4) is known, and this renders an
estimate ofα andβ impossible.

The idea of the method is that the curvesa(τ) of
Fig. 3 and the VADM of Fig. 1 are the same. After
appropriate scaling of the horizontal and vertical axes
one should be able to place the two on top of one
another, except that the realisation of the forcing by
turbulent convection is different. The appropriate tool
to use under these circumstances is the autocorrelation
function. The method amounts to choosing a value for
τd to fix the absolute time axis of Fig. 3. Next, the
autocorrelation function of the signal of Fig. 1 and of
a(τ) are computed, andτd is adapted until the two
curves overlap.

The expected shape of the autocorrelation function
〈a(τ)a(τ + s)〉 may be computed as follows. The
Fokker–Planck equation (6) is equivalent to the Itô
stochastic equatioṅa = S + DL(τ ), whereL is a
rapidly varying Langevin force, or

da

dτ

 Λ(1 − a2)a + DL(τ ). (13)

(Gardiner, 1990). We are interested in small oscilla-
tions as the particle oscillates arounda = 1 in Fig. 4,
and seta = 1 + δa:

dδa

dτ

 −2Λδa +∆0L(τ). (14)
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From this equation, the autocorrelation function of
δa(τ ) follows immediately: 〈δa(τ )δa(τ + s)〉 ∝
exp(−2Λs), i.e. after rectifying the data to eliminate
reversals and subtraction of the mean we have for this
new series̃a that

〈ã(τ )ã(τ + s)〉 ∝ exp(−2Λs). (15)

This approximate result says that the autocorrelation
function is determined by the roll down timeΛ−1 of
the particle in the well, and that it is independent of
the forcing time scaleτc as long asΛτc � 1 (for the
exact result see Gardiner, 1990, p. 131). This inequal-
ity is well satisfied, and hence the typical time scale
of the variations that one sees in Fig. 1 is, not surpris-
ingly, just the time scale for restoring the non-linear
equilibrium of the geodynamo.

5.1. Autocorrelation functions

The autocorrelation functions in Fig. 7 have been
computed as follows. The numerical dataaj (spac-
ing 0.01τd) are processed into an artificial Sint-800
series as follows. We select a value forτd, rectify
the data, and take a running average overτav years
so that the physical time resolution corresponds to

Fig. 7. Comparison of the autocorrelation functions of the Sint-800 data (dashed lines, with error bars), and of the amplitudesa(τ) of the
model of Fig. 3 (drawn lines) for various choices ofτd and τav (in kyr). The autocorrelation functions have been computed as outlined in
the text. The dashed line is the same in all panels.

that of the Sint-800 data. Next we pick 799 consec-
utive points spaced by 1000 years, and subtract the
mean. For the 799 Sint-800 data pointssi we reverse
the direction of time and subtract the mean. For the
resulting series{xi} we compute

∑799−50
i=1 xixi+k,

for k = 0–50, and we rescale to 1 fork = 0. The
error bars in the Sint-800 autocorrelation of Fig. 7
are of order 799−1/2 
 0.035 and have been com-
puted by generating artificial Sint-800 data, as in
Section 4.4. In this way we obtain reasonable error
estimates for small time shifts—in practice up to
about 25 kyr.

Fig. 7a–c illustrates that the method seems to work
and thatτd can be adapted so that both autocorrela-
tion functions overlap. Since the simulation of Fig. 3
is very long we are able to generate many sets of arti-
ficial Sint-800 data by starting at different points. The
best fit for one of these other series is shown in Fig. 7f.
The fit is therefore not always as good as suggested
in Fig. 7b! But it is encouraging that the anticorrela-
tion in the Sint-800 data fort � 25 kyr is generally
reproduced by the model. It appears that both auto-
correlation functions agree best forτav ∼ 5 kyr and
that τd ∼ 10 kyr. It is clear from Fig. 7b,d and e that
τav = 10 kyr is too much andτav = 0 too small. This
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last autocorrelation function of Fig. 7d withτav = 0
follows relation (15) quite well for smalls.

After some further testing we arrived at the conclu-
sion that the turbulent diffusion timeτd = R2/β =
11±2 kyr (and that the physical time resolution of the
Sint-800 data is several kyr). Like any determination
of dynamo parameters, this value is model dependent.
Basically we measureΛ/τd andΛ is model dependent.

6. Can we accomodate all constraints?

Section 4 ended with a disappointment: we had nu-
merical data, Sint-800 data and theory all agree very
closely with one another, except for the mean rever-
sal time〈Tr〉 ∼ 6 Myr, which is too large. We have
explored other models with different parameterskR,
Cm andf 2τc/N

2
c to see if it possible to reduce〈Tr〉

while maintaining reasonable agreement in the other
areas, but we have not been completely successful.
Many compromises are possible and we found no clear
route to an optimal model. One of the better ones
is displayed in Figs. 8 and 9, and Table 1, row 5.
The turbulent diffusion time determined with the au-
tocorrelation method of the previous section is larger,
τd 
 16 ± 4 kyr, mainly because the model has a
largerΛ. The mean reversal time of the run in Fig. 8
was (113± 5)τd, which agrees now rather well with
the theoretical value of 138τd. It would correspond to
∼1.8 Myr, which lies within the confidence interval of

Fig. 8. Same as Fig. 3 but now for different parameters. Shown is the polarity (top), and the amplitude (bottom) of the dipole mode.
The mean reversal time is 113± 5, and the secular dipole variationdv = 0.081. Parameters:kR = 0.3, Cm = 120, Λ = 0.815,
f 2τc/N

2
c = 2.45× 10−2 (f = 7, τc = 0.05, Nc = 10) and timestep�τ = 0.01.

Fig. 9. Example of a fit designed to meet the criterium of a smaller
〈Tr〉. This figure is similar to Fig. 6b, and has been constructed
with expression (A.1) forp(a), and the numerical amplitudesa
of Fig. 8.

(0.22, 3.3) Myr. The mean reversal time is smaller due
to two effects, as explained in the Appendix A:p(0)
in Fig. 9 is larger than in Fig. 6, i.e. the amplitudea
is more often neara = 0, and the diffusion coefficient
D 
 ∆1 is larger there.
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However, this smaller〈Tr〉 comes at a price. The fit
of (A.1) to the Sint-800 data and the simulated data
in Fig. 9 is worse than in Fig. 6b. The former has
a χ2 corresponding to 5σ , see Table 1. But on the
whole the fits are not unreasonable. The secular dipole
variationdv of the simulation data is 0.081, somewhat
larger than 0.071± 0.003 of the Sint-800 data. The
second concern is the duration of a reversal which is
now in the 8–30 kyr range, which seems to be rather
long.

7. Discussion and summary

The prevailing attitude of today seems to be that
only fully three-dimensional solutions of the MHD
equations can provide insight in the physics of the geo-
dynamo. Strictly speaking this is true, but there is the
risk that the perspective on the basic mechanisms is
lost. It may very well prove impossible to clarify the
physics with simulations only. Ideally, simulations and
simpler models should be developed jointly. As an ex-
ample, consider Brownian motion. Although it is now
feasible to follow the orbits of the many molecules col-
liding with the Brownian particle and with each other,
the theory would be in a sorry state if one insists that
only this full scale approach is meaningful, and if the
simple Langevin equation that often catches much of
the physics were off-limits. Against this background
we have developed a mean field model for the axisym-
metric component of the geomagnetic field, in particu-
lar of the dipole component. Our aim was a model that
is sufficiently detailed to permit a quantitative com-
parison with the observations, a topic that has received
surprisingly little attention. To this end we have taken
into account that the regeneration of poloidal from
toroidal field by the helical convection is non-steady.
This is modelled by allowing for fluctuations in the

Table 2
Model parameters

Case Figure kR Cm f 2τc/N
2
c τd (kyr) τr (kyr)a 〈Tr〉b (Myr) dvc β/η

1 3, 6b 0.5 100 1.46× 10−2 11± 2 5–20 5–7.5 0.070 ∼30
2 8, 9 0.3 120 2.45× 10−2 16± 4 8–30 1.3–2.2 0.081 ∼ 20

a Duration of a reversal.
b From run, and the value ofτd.
c From run; the Sint-800 value is 0.071± 0.003.

dynamo parameterα on the fast eddy turnover time
scale.

The model is a one-dimensionalαΩ dynamo and
the properties of the fluctuations in the parameterα

are derived from a simple picture of homogeneously
distributed convection cells all having the same statis-
tical properties. This ‘minimalistic’ approach suffices
to account for almost all known statistical properties
of the geomagnetic dipole. The fluctuations generate
a variable dipole field and occasional reversals. In this
picture, reversals are fast, random events without a
real cause. They are rare because it takes time before
the proper sequence of fluctuations materialises that is
able to induce an overall sign flip. Variability and re-
versals are thus inseparably linked—you cannot have
one without the other. Never mind how small the fluc-
tuations and the ensuing variability, there will always
be a next reversal, though the waiting time grows ex-
ponentially with the parameter(f 2τc/N

2
c )

−1. This is
what may have happened during the Cretaceous super-
chron. The model and the statistical theory that goes
with it have been explained in HOS, and in this paper
we have made a detailed comparison of the Sint-800
data and the model. We regard this as a first step to-
wards a quantitative analysis of the available geomag-
netic records.

Two cases have been analysed and their parameters
are summarized in Table 2. We conclude that the model
describes the Sint-800 data rather well, although we
have not reached complete agreement. Either the mean
time 〈Tr〉 between reversals (case 1) or the duration of
a reversal is too long (case 2). The difficulty may be
traced back to the value of the turbulent diffusion time
τd = R2/β. If that had been a factor 2–3 times smaller
the model would describe the data perfectly. This may
indicate that our model is not adequate. However, we
may also have overlooked certain effects while con-
structing the artificial Sint-800 series. We did allow
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for the finite physical time resolution of the Sint-800
data by taking a running average, but there may be
other, systematic effects (see for example, Section 4).
We have not used the data of Valet and Meynadier
(1993) which comprise a period of 4 Myr, because they
are less reliable than the Sint-800 data. But it may
be worthwhile to apply our analysis to these data as
well because the mean time between reversals would
be much better constrained. Taking all things together
we think our results look promising, given that this is
only the first time an analysis of this type has been
undertaken. For the same reason we did not employ
any of the more advanced (maximum likelihood) fit-
ting methods which have the advantage that binning is
no longer necessary, but require a considerably larger
computational effort.

We now address the question whether our results
will carry over to more realistic two-dimensional
models with an independent radial coordinate. The
answer is affirmative, provided the model has a sta-
tionary fundamental dipole mode. Briefly, the reason
is that the mode equations (5), the starting point of the
analysis, do not depend on the dimensionality of the
dynamo (for details see HOS). It is true that classical
αΩ dynamos in a two-dimensional sphere or spher-
ical shell tend to have oscillatory solutions (Roberts,
1972), but several mechanisms have been proposed
that favour stationary dynamo action. One is spatial
separation of the induction effects (Deinzer et al.,
1974; Gibbons, 1998). Furthermore,α2 dynamos are
usually non-oscillatory (Roberts, 1972). Meridional
circulation is another mechanism known to promote
stationary dynamo action (Roberts, 1972; Sarson and
Jones, 1999). Finally, a conducting solid inner core
inhibits oscillatory dynamo action and has a stabil-
ising effect (Hollerbach and Jones, 1993; Glatzmaier
and Roberts, 1995a,b). We are confident that there
exists a range of realistic two-dimensional models
with a stationary fundamental dipole mode. We have
constructed a model with a passive conducting inner
core and the initial tests look promising.

Such a model would allow us for example to study
the influence of the inner core, and to address the ques-
tion whether the duration of a reversal is set by the
Ohmic diffusion time of the inner core as suggested
by Gubbins (1999), or by the turbulent diffusion time
τd of the outer core as in the present model. From our
experience with the work of Section 6, we expect that

most models with a stationary fundamental mode can
be tuned to reproduce the statistical properties of the
geomagnetic dipole field. The models without fluctua-
tions serve as a ‘substrate’ generating the bistable po-
tential of Fig. 4. By fitting the data as in the present
paper, we shall be able to determine some charac-
teristics of the bistable potential such as slopes and
the height of the central hill. Trade-offs are possible,
where a change in one parameter is compensated by
changing another. Hence we shall gain only a limited
amount of information on the ‘substrate model’. But a
wholly succesful fit to the data and a more reliable set
of fluctuation parameters may be in the offing. This in
turn will enhance confidence in rapid (helicity) fluctu-
ations as a generic mechanism for inducing variability
and reversals.

Finally, our acceptance of mean field theory to de-
scribe the physics of the geodynamo needs clarifica-
tion. It is true that geodynamo theory could afford
to move away from mean field theory, due to the
low magnetic Reynolds number of the outer core, but
the question whether or not mean field theory ap-
plies has never really been settled. A decisive issue
is the value of the eddy magnetic Reynolds number
Rm = uλc/η ∼ β/η (sinceuτc ∼ λc). We infer β
from β = R2/τd andR = 3500 km. The conductiv-
ity of the core is 6× 105 S m−1 (Merrill et al., 1996,
p. 274) whenceη ∼ 1.3 × 104 cm2 s−1. The result-
ing eddy magnetic Reynolds numbersβ/η are per-
haps just large enough to support the notion of field
lines frozen into the eddy convection. We infer from
(4) thatαmΩ

′ = Cm/τ
2
d , and takeΩ ′ = dΩ/dr 


−2.4×10−18 (cm s)−1, corresponding to a differential
rotation of −1◦ per years over�R = 2300 km, the
depth of the outer core (Richards, 2000). This leads
to αm ∼ −2.5 × 10−4 cm s−1. Next Cα ≡ αmR/β

and CΩ ≡ Ω ′R3/β may be computed to find that
Cα/CΩ ∼ 10−3, so that theαΩ approximation is
justified.
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Appendix A. Improved expression for p(a)

A more accurate expression forp(a) can be
obtained by allowing for the correction term in the
definition (7) ofS. This correction has been consid-
ered in Appendix B.1 of HOS. To reduce the techni-
calities to a minimum we jump now to the end of that
Appendix where the functiong1(a) is derived. We
also adopt temporarily the notation used there without
further introduction. It was argued there thatg1(a) is
of the formg1(a)/(1 − a2) = Aa(1 + Ba2 + · · · ). In
HOS only the termAawas included, and then relation
(HOS, 33) says thatS = µ(1− a2)a+A(1− a2)a =
Λ(1− a2)a. To be able to include the next termABa3

we require the value ofB.
Comparing the expressiong1(a)/(1−a2) = Aa(1+

Ba2+· · · )with relation (HOS, B3) we find thatAa(1+
Ba2) ∝ ∫ π

0 dθ sinθ cosθ P̃0 〈T+〉|a . We have com-
puted 〈T+〉|a=1 numerically, by storing the function
T+(θ) each timea passes through 1 during the sim-
ulation of Fig. 3, and find that〈T+〉|a=1 = 0 to good
approximation. Intuitively, this is a reasonable result:
when the amplitude of the dipole mode is equal to its
value in the non-linear equilibrium, the overtone am-
plitudes are apparently zero on average. It follows that
Aa(1+ Ba2 + · · · ) must be zero ina = 1, orB = −1
if we ignore the higher-order terms. This leads toS =
Λ(1 − a2)a + (µ −Λ)(1 − a2)a3. After insertion in
(9) and some algebra we obtain:

p(a)∝ 1

a2 + c2

×exp

{
γ

∫ a2

0

1 + (µ/Λ− 1)x

x + c2
(1 − x)dx

}
.

(A.1)

Here,γ andc2 are defined as in (11) and the value of
µ/Λ is known for a given model (1.45 for Fig. 3, and
1.82 for Fig. 8). The correction term inS can still be
recognised as the factor(µ/Λ − 1) in the numerator
of (A.1), and if it is set equal to zero one regains
(10). Explicit evaluation of (A.1) is straightforward
but suppressed here. Since the highest-order term in
the integrand is∝ x, the exponent now contains an
a4-term. The maximumam of (A.1) wherep′(a) = 0
turns out to follow from a simple quadratic equation,
{1 + (µ/= − 1)a2

m}(1 − a2
m) = 1/γ (and ifµ/Λ− 1

is set to zero again, we getam = (1 − 1/γ )1/2 as

mentioned in Section 4.2). The expression for〈Tr〉 is

〈Tr〉 ≈ 4π

∆1

(
1

φ′′
0ψ

′′
m

)1/2

exp(ψm)

= 4π

∆1

(
1

φ′′
0ψ

′′
m

)1/2
p(am)

p(0)
. (A.2)

For the definition of the functionsψ(a) andφ(a) we
refer to Appendix A of HOS;φ′′

0 = φ′′(0), andψm,ψ ′′
m

are the value ofψ andψ ′′ in a = am. The first expres-
sion in (A.2) has been given in Appendix F of HOS,
and the second follows becausep(a) ∝ exp[ψ(a)] and
ψ(0) = 0. The functionsψ(a) andφ(a) become more
complicated when the correction term in the definition
(7) of S is included, but relation (A.2) remains valid
as it stands. We have derived explicit expressions for
〈Tr〉 from (A.2), as well as fordv. These expressions
are needed for the computations described in the text,
but details are omitted here.

The second relation in (A.2) is given here because
it demonstrates that〈Tr〉 is particularly sensitive to the
values ofp(0) and of the diffusion coefficient∆1 in
a = 0, becauseφ′′

0, ψ ′′
m and p(am) are rather well

determined by the fitting procedure.
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