The stochastic nature of predator–prey cycles

Tânia Tomé a,*, Áttila L. Rodrigues a, Everaldo Arashiro a, b, Mário J. de Oliveira a

a Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05314-970 São Paulo, SP, Brazil
b Departamento de Física, ICEB, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, Minas Gerais, Brazil

A R T I C L E I N F O

Article history:
Received 30 September 2008
Received in revised form 18 December 2008
Accepted 8 January 2009
Available online xxxx

PACS:
87.23.Cc
87.10.Hk
05.70.Ln

Keywords:
Population dynamics
Population cycles
Predator–prey systems

A B S T R A C T

We study by numerical simulations the time correlation function of a stochastic lattice model describing the dynamics of coexistence of two interacting biological species that present time cycles in the number of species individuals. Its asymptotic behavior is shown to decrease in time as a sinusoidal exponential function from which we extract the dominant eigenvalue of the evolution operator related to the stochastic dynamics showing that it is complex with the imaginary part being the frequency of the population cycles. The transition from the oscillatory to the nonoscillatory behavior occurs when the asymptotic behavior of the time correlation function becomes a pure exponential, that is, when the real part of the complex eigenvalue equals a real eigenvalue. We also show that the amplitude of the undamped oscillations increases with the square root of the area of the habitat as ordinary random fluctuations.

© 2009 Published by Elsevier B.V.

1. Introduction

The coexistence of interacting biological species in their habitat is affected by random fluctuations [1,2]. The number of species individuals in a given territory fluctuates in time and must be regarded as stochastic noise. In an interacting biological species system that shows cycles in the number of species [3–5], the cycles are also affected by random fluctuations [1,2] and must also be regarded as stochastic noise. In ordinary non-cyclic coexistence, the fluctuations are found to be ordinary Brownian noise, characterized by the exponential decay of the time correlation function. In cyclic coexistence, known as phase-forgetting quasi-cycles [1,2], however, the fluctuations are not ordinary Brownian noise but are characterized by exponentially decaying oscillations of the time correlation function.

The main purpose of this paper is to show, by studying a stochastic lattice model for predator–prey system, that the time behavior of species coexistence, is related to the dominant eigenvector of the evolution operator associated to the stochastic dynamics of population. When the corresponding eigenvalue is real, the decay of the time correlation function is exponential, the noise is ordinary Brownian, and the system presents oscillatory species coexistence; the imaginary part being the frequency of the cycles.

We aim also to characterize the transition from an oscillatory coexistence of species to ordinary coexistence. A transition from one behavior to the other is defined as the point where the real part of the complex eigenvalue equals the real eigenvalue. The imaginary part of the complex eigenvalue, the frequency of oscillations, may act as an order parameter. In the present study we find that it jumps from a nonzero to a zero value characterizing a discontinuous transition. We remark however that this transition is not a phase transition in the thermodynamic sense, but is a real change in the behavior of biological population, that can actually be observed.

The above scenario will be revealed by the use of numerical simulations of the stochastic lattice model describing a predator–prey system, introduced in 1994 by Satulovsky and Tomé (ST) [6], which displays stable local self-sustained oscillations called also endogenous quasi-cycles [1]. This model takes into account two essential features in describing population dynamics: the stochasticity embodied in a biological population [1,2] and the spatial structure of the habitat [7,8] and belongs to a class of stochastic lattice models with stochastic local rules [9–22]. Models in this class are continuous Markov processes defined by discrete stochastic variables residing on the sites of the lattice, that is, governed by a master equation, incorporating the discreteness of the species individuals and local interactions.

A remarkable property of the stochastic lattice model studied here is that the amplitude of the undamped cycles in the
number of species individuals in a given territory increases with
the square root of the area of the territory [11,23–25], the same
property valid for ordinary stochastic fluctuations. The undamped
oscillations are intertwined with the stochastic fluctuations and
are not expected to be synchronized oscillations, whose ampli-
tude would increase with the area and should be identified as
phase-remembering quasi-cycles [1,2]. The unsynchronized cyclic
oscillations, and for sufficient large values of
time according to the Master equation
(3) prey individual dies and is instantaneously replaced
by a new born predator; (c) (2 → 0) a predator can die leaving
an empty site. The two first processes are catalytic whereas the
third is spontaneous. The transition rate \(w_i(\eta) \) from a configura-
tion \(\eta = \{ n_j \} \) to another configuration such that the state of site \(i \)
is changed in the cyclic order \(0 → 1 → 2 → 0 \) is given by

\[
w_i(\eta) = \frac{a}{4} \sum_k n_{i+k} + \frac{b}{4} \sum_k m_{i+k} + cm_i,
\]

where the summation is over the nearest neighbor sites and \(a, b \)
and \(c \) are three parameters related to the three processes.

The probability \(P(\eta, t) \) of configuration \(\eta \) at time \(t \) evolves in
time according to the Master equation

\[
dt P(\eta, t) = \mathcal{V} P(\eta, t),
\]

where \(\mathcal{V} \) is the operator defined by

\[
\mathcal{V} \phi(\eta) = \sum_i \{ w_i(\eta^i) P(n^i, t) - w(\eta) \phi(\eta) \},
\]

where the state denoted by \(\eta^i \) is obtained from \(\eta \) by a anticyclic
permutation of the state of site \(i \), that is, \(2 → 1 → 0 → 2 \).

As one varies the three parameter \(a, b \) and \(c \), one finds an ac-
tive stationary state, that can be of two types, with and without
oscillations [6]. By rescaling time it is always possible to
make \(a + b + c = 1 \) with \(0 \leq a, b, c \leq 1 \). Indeed, suppose that
we are given values of parameter \(a^*, b^* \) and \(c^* \) such that their sum
\(s \) is distinct from unity. If we divide both members of the master
equation (3) by \(s \) and rescale time \(t^* = st \) then the new parameters
will be \(a = a^*/s, b = b^*/s \) and \(c = c^*/s \) which sum up to \(1 \).

We have simulated the ST model on a square lattice of \(N = L \times L \)
sites, which is to be regarded as proportional to the area of
the territory where the species survive, with periodic boundary
conditions, for \(a = b = (1 - c)/2 \) for several values of \(c \). For small
values of \(c \), the model displays species coexistence in which the
density of predator is nonzero and the density of prey is strictly
less than one, called an active state. Increasing \(c \), the density of

\[
\text{Fig. 1. Deviation } n - \bar{n} \text{ in the number of prey individuals as a function of time } t,
\]

\[
\text{Fig. 2. Amplitude of fluctuations in the number of prey } A = \sqrt{\langle n^2 \rangle - \bar{n}^2} \text{ as a function of } c
\]

\[
\text{for several values of the system sizes } L, \text{ for the case } a = b \text{ and } c = 0.10.\]

The deviation \(n - \bar{n} \) of the number of prey \(n \) from its average
\(\bar{n} = \langle n \rangle \) scales as \(n - \bar{n} \sim \sqrt{N} \) as can be seen in Fig. 1 for \(c = 0.10 \), where oscillatory noise can be observed. To check this scaling
we determined the mean amplitude \(A \), defined by \(A = \sqrt{\langle n^2 \rangle - \bar{n}^2} \). From Fig. 2 it follows that indeed the amplitude scales as \(A \sim \sqrt{N} \),
for sufficiently high values of \(N \).

3. Time correlation

In order to calculate time correlation functions, we need to
determine the conditional probability \(K(\eta, t; \eta', t') \) of configuration \(\eta \)
at time \(t \) giving the configuration \(\eta' \) at a previous time \(t' \). This quantity obeys the Chapman–Kolmogorov equation which in dif-
ferential form is given by

\[
dt K(\eta, t; \eta', t') = \mathcal{V} K(\eta, t; \eta', t'),
\]

with the initial condition \(K(\eta, t'; \eta', t') = \delta(\eta, \eta') \).

Please cite this article in press as: T. Tomé et al., The stochastic nature of predator–prey cycles, Computer Physics Communications (2009), doi:10.1016/j.cpc.2009.01.005
A prey–prey autocorrelation function in the stationary regime is defined by
\[c_1(t) = \sum_{\eta} \sum_{\eta'} n_1 K(\eta, t|\eta', 0) x' P(\eta') - \bar{x}^2, \quad (5) \]
where \(x' = n'/N \) and \(n' \) is the number of prey individuals in configuration \(\eta' \), and \(\bar{x} = \langle x \rangle \). Other time correlations can be defined by similar expressions.

Numerically, we have used the following expression for the prey autocorrelation function:
\[c_1(t + s + s) = \langle (x(t + s) - \bar{x})(x(s) - \bar{x}) \rangle \]
where \(t \) is the time lag. The quantity \(s \) is considered to be large enough for the system to be in the stationary regime, occurring after the transient. Fig. 3 shows the time correlation function as a function of the time lag for several values of \(c \) inside the species coexistence interval. In all cases the correlation decreases with the time lag \(t \), vanishing when \(t \to \infty \). Two regimes can be distinguished. One with oscillations and the other without.

For large values of \(t \), the conditional probability \(K \) approaches the stationary probability distribution. Asymptotically, we have
\[K(\eta, t|\eta', 0) = P(\eta) + \Phi(\eta) X(\eta')e^{i\lambda t}, \quad (6) \]
where \(\lambda \) is the eigenvalue with the greatest real part, which we call dominant eigenvalue, of the operator \(\mathcal{X} \) and \(\Phi \) and \(X \) their corresponding right and left eigenfunctions. Substitution of this expression into Eq. (5) gives the following asymptotic behavior for the prey–prey time autocorrelation
\[c_1(t) = Be^{i\lambda t}. \quad (7) \]
When \(\lambda \) is complex with a nonzero imaginary part, that is, \(\lambda = -\alpha \pm i\omega \), the time correlation function is
\[c_1(t) = B_1 e^{-\alpha t} \cos(\omega t), \quad (8) \]
which describes a chromatic Brownian noise. If the dominant eigenvalue is real, \(\lambda = -\gamma \), the time correlation is an exponential
\[c_1(t) = B_2 e^{-\gamma t}, \quad (9) \]
which describes an ordinary Brownian noise. We have determined for each correlation function shown in Fig. 3 the values of \(\alpha, \omega \) and \(\gamma \) by fitting to the data points the right-hand side of either Eqs. (8) or (9). When \(\alpha \approx \gamma \) we have used instead the function
\[c_1(t) = B_1 e^{-\alpha t} \cos(\omega t) + B_2 e^{-\gamma t}, \quad (10) \]
which is the sum of the right-hand sides of Eqs. (8) and (9). The three quantities are plotted as a function of \(c \), as shown in Fig. 4. The change in behavior happens when \(\alpha = \gamma \) which occurs at \(c^* = 0.148(4) \). Notice that \(\alpha \to \omega = 0.057(9) \), a finite value, when \(c \to c^* \).

4. Conclusion

In summary, we have shown by numerical simulation that the phase-forgetting quasi-cycles in stochastic lattice models are related to the complex “gap” of the evolution operator; the imaginary part of the “gap” being identified as the frequency of oscillations. We remark that the emergence of a complex eigenvalue, leading to a sinusoidal exponential decaying of the time correlation function, observed in real population data [1], is only possible because the dynamics lacks detailed balance (is microscopically irreversible). The evolution operator of a system that obeys detailed balance (microscopically reversible) exhibits solely real eigenvalues. The amplitude of the noisy oscillations on the number of species individuals increases with \(\sqrt{N} \), in the same way as ordinary stochastic fluctuations, characterizing unsynchronized oscillations.

References