
J. Physiol. (Paris) 94 (2000) 357–374
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Abstract – Central pattern generating neurons from the lobster stomatogastric ganglion were analyzed using new nonlinear methods.
The LP neuron was found to have only four or five degrees of freedom in the isolated condition and displayed chaotic behavior. We
show that this chaotic behavior could be regularized by periodic pulses of negative current injected into the neuron or by coupling
it to another neuron via inhibitory connections. We used both a modified Hindmarsh-Rose model to simulate the neurons behavior
phenomenologically and a more realistic conductance-based model so that the modeling could be linked to the experimental
observations. Both models were able to capture the dynamics of the neuron behavior better than previous models. We used the
Hindmarsh-Rose model as the basis for building electronic neurons which could then be integrated into the biological circuitry. Such
neurons were able to rescue patterns which had been disabled by removing key biological neurons from the circuit. © 2000 Elsevier
Science Ltd. Published by Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

Central pattern generating circuits (CPGs) are
neural networks specialized for the production of
rhythmic motor patterns. Found in all nervous
systems, they have evolved to produce rhythmic
spatio-temporal motor patterns independently, i.e.
without the need of rhythmic sensory feedback [4].
Of course the patterns are strongly influenced by
sensory feedback as well as by chemical neuro-
modulatory substances, but the fundamental struc-
ture of the pattern is determined by the synaptic
connections and biophysical properties of the indi-
vidual neurons. These properties are crucial in
determining the timing and organization of the
motor patterns. They can be altered chemically so
that, by exposing CPGs to chemical modulators
always present in nervous systems, they can be
functionally reconfigured, so that one anatomical
circuit can produce many different stable modes of
activity. This presents an analytical challenge since
in intact animals the properties of CNS neurons
are in a constant state of flux [9]. In general, CPGs
require the presence of one or more modulators to
function in a normal manner and if completely
free of modulatory influence will usually be inoper-
ative. So the challenge is to provide CPGs with

enough modulation to be rhythmically active and
then hold the chemical environment constant so
that the rhythms will be stable for extended peri-
ods. Depending on the particular chemical modu-
lators present, a large number of different patterns
can be generated. During these stable regimes,
however they must still be flexible enough to re-
spond to sensory input from the environment.
Most circuits of model neurons are unable to
simulate this important property.

Invertebrate CPGs have been shown to be very
useful for studying the mechanisms of pattern
generation because they are particularly amenable
to experimental analysis and they are usually made
up of limited numbers of relatively large neurons
that can be repeatedly identified from one animal
to another. The part of the nervous system con-
taining the CPG machinery can be removed from
the rest of the animal, thus reducing or entirely
eliminating the changes caused by the chemical
substances they are exposed to normally. Using
small CPG systems, paired recordings can be made
from the same identified neurons in different
preparations and their synaptic connectivity estab-
lished. Recording from pre- and postsynaptic neu-
rons has uncovered the circuitry for many small
CPGs. We suggest that the neural patterns these
CPGs generate are robust and reliable in the face
of noise and external perturbations even though,
as we will demonstrate, individual neurons in the
circuit may behave chaotically. By behaving chaot-
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ically we mean that when isolated from all synap-
tic input from other neurons and subjected to both
linear and nonlinear analysis, they not only
demonstrate irregularities in their membrane po-
tential bursting/spiking firing patterns, but also
demonstrate deterministic chaos in their phase
space attractors, Lyanopov exponents and entropy
measurements.

To investigate this thesis, we have begun to
analyze the pattern generating mechanisms of the
lobster pyloric rhythm using new analytical tech-
niques. We have been working on two CPGs, the
gastric and the pyloric, from the lobster stomato-
gastric system, for over 30 years [9, 18, 19]. The
gastric CPG is the more complex of the two and
operates the three teeth of the gastric mill. The
pyloric CPG is the faster rhythm and operates a
filtering mechanism at the lower end of the stom-
ach. Although driving movements of the stomach,
the muscles involved are striated and require con-
tinuous control from the CNS. While the physio-
logical details of both circuits are known, it cannot
be said that we understand, by any rigorous for-
mulation, how the motor patterns are produced,
i.e. at a reductionistic level we know the physiolog-
ical properties of the cells and synapses, but the
total operation of the network is an ‘emergent
property’ that is more than the sum of its parts.
This is especially the case for CPGs where most of
the properties are nonlinear and dynamic.

We have analyzed the pyloric CPG because we
believe that by understanding the patterns pro-
duced by this small system, we will gain some
insights as to how larger circuits in the brain are
able to generate spatio-temporal patterns. Our ap-
proach relies heavily on being able to move seam-
lessly between experiment and theory. At the
present time it is not possible to prove or disprove
the validity of large scale modeling of the brain
since untestable assumptions are made with re-
gards to synaptic connectivity and cellular proper-
ties, general phenomena which are essential in
making useful and informative models. We seek to
provide a rigorous formulation of the underlying
principles by modeling a well-defined system. Our
models mimic the output of a biological CPG not
just in the steady state, but during a variety of
perturbations as well. We are particularly inter-
ested in capturing the dynamical properties of the
biological systems. The models are simple enough
to study with available mathematical and compu-
tational techniques. We have been applying these
new modeling and nonlinear analysis methods to
the lobster pyloric CPG in order to try and answer
several fundamental questions:

– How can a CPG, made up of neurons which
produce chaotic voltage oscillations, generate regu-
lar spatio-temporal rhythmic activity patterns that
are stable, robust and reliable in the presence of
noise, yet flexible enough to provide specific and
reproducible responses to inputs?
– If there is chaos in CPG systems, what role does
it play during normal behavior?
– How many degrees of freedom are needed for
modeling a biological CPG accurately? i.e. how
many equations will capture the biological
behavior?
– We know that in intact systems neurons fire
more regularly than when isolated. What are the
mechanisms that achieve this regularization in in-
tact GPG systems?

Our strategy has been to first determine the
dynamical properties of single neurons in the py-
loric circuit after they have been synaptically iso-
lated from the other neurons. Thus, if the isolated
neurons show chaotic behavior, we can be sure it
is not the result of nonlinear synaptic interactions.
We then examine how these isolated neurons can
become regularized by various kinds of synaptic
inputs from other neurons or by periodic pulses of
current. We then extend the analysis by construct-
ing mathematical models of the pyloric neurons
that reproduce the dynamical aspects of isolated
cells and small subsets of cells both in steady state
and perturbed conditions. Finally we describe an
in silico model of neurons, i.e. electronic neurons
that though elegantly simple, appear to capture all
of the essential dynamical features of membrane
potential in their biological counterparts. We ex-
amine the properties of their individual behaviors
under a variety of perturbations as well as examin-
ing their behaviors in pairs and in hybrid circuits
with biological neurons.

2. Dynamical properties of biological neurons

Neurons in the pyloric CPG circuit are synapti-
cally connected as shown in figure 1. There are
fourteen neurons in the circuit, all motor neurons
except AB, which is an interneuron. When the
circuit receives neuromodulatory input from two
upstream ganglia, the commissurals (CGs), the
membrane potentials of all of the neurons show
bursting-spiking activity, i.e. they are what are
termed conditional oscillators, conditional upon
the presence of modulators that activate the under-
lying bursting currents. The oscillatory activity is
somewhat irregular in each individual neuron, but
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Figure 1. Electronic equivalent circuit for the lobster pyloric
central pattern generator. Black dots represent chemical
synapses and resistors represent electrotonic connections. There
are two pyloric dilator neurons (PD), one lateral pyloric (LP),
one ventricular dilator (VD), one inferior cardiac (IC) and eight
pyloric neurons (PY). All of the neurons except the anterior
burster (AB), are motor neurons as well as pattern forming
neurons.

cuit. The AB interneuron is the only neuron
which, when isolated, has periodic regular bursting
activity. Because the AB’s activity has the highest
natural frequency, it also serves as the pacemaker
for the entire pyloric network. The neurons com-
prising the pyloric network are typical of both
vertebrate motorneurons and spinal interneurons
in that they contain large numbers of channels,
receptors and synaptic mechanisms [9].

We selected the LP neuron for detailed analysis
because it appeared to be typical of many pyloric
motor neurons and a large amount of information
about this particular neuron already existed [8].
Intracellular time series lasting several hours were
sampled at a data rate of 2 kHz (figure 2:1). The
Fourier power spectrum for this time series was
broadband without separate peaks as is typical in
cases of a chaotic time series, and did not reveal
anything about the dynamics underlying the intra-
cellular voltage signal. A nonlinear analysis how-
ever suggested that by using the method of false
nearest neighbors [1], the active degrees of freedom
for the LP neuron are only four or five. This
suggests we can make models of the behavior of
this neuron with only five degrees of freedom. This
was a remarkable finding because neurons contain

becomes more regularized when the neurons are
embedded in a network and receive synaptic input
(mostly inhibitory) from other neurons in the cir-

Figure 2. Irregular spontaneous bursting in a synaptically isolated LP neuron still receiving modulatory input from the commissural
ganglia. (1) Excerpt from an extended time series showing a typical irregular bursting pattern. (2) Three bursts aligned by their first
spike and superimposed. (3) Phase space diagram of slow voltage oscillations from a time- series of a similarly isolated LP. The
membrane potential [V(t)] was low-pass filtered to remove the spikes. The plot of V(t) against its first and second derivatives
reconstructs an attractor showing, in addition to noise, apparent deterministic structure. The motion in time is counter-clockwise. The
large orbit corresponds to the overall slow wave (from burst to burst), the smaller spiral to faster oscillations on the plateau (during
each burst).
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many more than five fast and slow dynamical
processes and therefore usually considerably more
than four or five equations are thought to be
necessary for an adequate model. Modifications of
the original Hodgkin-Huxley equations [12] to in-
clude the dynamics of more recently discovered
channels are a good example. This finding opened
up two possible options for us to pursue. On the
one hand we could use rather simple phenomeno-
logical models that might capture the dynamics of
the neuron but would be inappropriate for model-
ing experimental data. On the other hand we could
utilize models which incorporate mathematical de-
scriptions of the principle ionic channels necessary
for more realistic simulations. We have tried both
approaches.

When the analysis of the LP time series data was
complete, it showed that the isolated neuron had a
positive global Lyapunov exponent, a hallmark of
chaotic behavior in a dynamical system. In an-
other study in which we made slight perturbations
to the orbit, we found that there were two positive
global Lyapunov exponents, one zero exponent
suggesting the behavior is governed by ordinary
differential equations, and two negative exponents.
A fractal dimension of approximately 4.4 was es-
tablished based on these global exponents. Chaotic
neurons in invertebrates have been reported previ-
ously [10, 13] but their analysis was much less
detailed. Chaotic oscillations are a possible state of
activity when many ion channels having different
kinetic properties are operating, but in fact many
typical Hodgkin-Huxley type models show little
chaos.

One may speculate as to the actual usefulness of
chaos in small systems — the ability to explore
wider domains of high dimensional space than if
constrained to a limit cycle for example, but the
fact is that when neurons are embedded in a
complex synaptic circuit, they behave in a much
more regular way than when they are isolated. The
networks made up of these unstable neurons oper-
ate in a reliable and predictible fashion but are
robust enough to resist strong perturbations.
CPGs that produce rhythmic motor patterns for
cyclic behaviors must contain a reliable system for
providing impulses to the appropriate muscles. It
is clearly important then to determine the mecha-
nisms involved in achieving this degree of regular-
ity and stability from what are inherently unstable
elements without losing the ability of the CPGs to
respond to sensory and command elements or
their ability to restructure themselves into func-
tionally new networks under the influence of neu-

romodulators. Therefore we decided to initially
examine the regularizing effects of various forms
of current injection, both natural and artificial,
into isolated pyloric neurons which were display-
ing chaotic activity.

2.1. Regularization of chaotic neurons

We have studied the LP neuron by characteriz-
ing its dynamic response to periodic current pulses,
sinusoidal driving and phasic inhibitory input
from presynaptic pacemaker neurons. Experimen-
tal perturbations were applied to isolated neurons
and the resulting time series were analyzed using
an entropy measure obtained from the power spec-
tra. As previously noted, when the LP was isolated
from phasic inhibitory input, it generated irregular
spiking-bursting activity. Each burst begins in a
relatively stereotyped manner, but then evolves
with exponentially increasing variability (figure
2:2) [6] This can also be seen in the chaotic
attractor (figure 2:3).

2.2. Regularizion of chaotic acti6ity
by current pulses

We found that depolarizing current pulses were
poor regulators of the neurons but the hyperpolar-
izing pulses were able to exert a strong, frequency-
dependent regularizing action. The LP was
synaptically isolated from other neurons in the
pyloric circuit by photoinactivating the PD and
VD neurons (because they are cholinergic and
cannot be specifically blocked pharmacologically)
and blocking the remaining glutamatergic synapses
with picrotoxin. The CGs were left connected to
the stomatogastric ganglion via the stomatogastric
nerve so the isolated LP would receive the same
neuromodulators it receives under normal experi-
mental conditions. Long time series traces (5–6
min) of membrane voltage were digitized and the
degree of irregularity in the observed oscillations
was determined from the power spectra and a
measure of the entropy for the harmonics of the
power spectra for frequencies up to 40 Hz.

Fast Fourier spectra were calculated from the
digitized voltage signals without filtering and the
power in harmonics up to 40 Hz, P(n) for n=
20 976 were converted to probability values as
p(n)=P(n)/SP(n).

An entropy function (in bits), S=
−Snp(n)log2[p(n)], was then evaluated. S gives a
quantitative measure of the complexity of the
power spectrum associated with the observed time
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Figure 3. Regularization of irregular bursting activity by injec-
tion of periodic current pulses. Recordings (a–c) and analysis
(d–f) of voltage activity in an LP neuron after removal of
chemical synaptic input from other pyloric neurons. (a) Free
running control activity. (b) Forcing by periodic depolarizing
current pulses (frequency, 0.45 Hz). (c) Forcing by periodic
hyperpolarizing current pulses at the same frequency. (d)
Fourier power spectrum for control activity. (e) Spectrum for
depolarizing pulses. (f) Spectrum for hyperpolarizing pulses.
Entropy values (S) are given in bits. Conditions: VD and both
PDs killed; PTX; 1 mM 4-AP.

0.45 Hz, to approximate excitatory input, there
were changes to the timing and duration of the
bursts as might be expected, but little change in
the irregularity (figure 3b). The entropy dropped
only to 7.71 and there was little change to the
power spectrum aside from the addition of local
peaks at the stimulus frequency and it’s multiples
(figure 3e). Hyperpolarizing current pulses meant
to mimic inhibitory input had a much more pow-
erful effect on regularizing the bursts (figure 3c).
As shown in figure 3c, f, entropy was reduced to
3.46 bits and the power spectrum was concentrated
into sharp peaks at the applied frequency and its
harmonics.

The mechanism underlying the stabilization ap-
pears to be due to the hyperpolarizing current
terminating the plateau potentials before instabili-
ties in the burst phase occur. The initial stable
phase of the burst can also be extended until the
arrival of the next inhibitory input.

2.3. Regularization of LP
by biological pacemaker inhibition

We also examined the way in which the LP
neuron could be regularized by biological in-
hibitory input. To do this we experimentally pro-
duced a subcircuit consisting of the pacemaker
group consisting of the electrotonically-coupled
AB and PD neurons, and the LP neuron. The VD
neuron was photoinactivated and removed from
the network and all other synapses once again
blocked with picrotoxin. This left the PDs with
their inhibitory inputs to the LP intact and by
direct current injection we could alter the fre-
quency of bursting in the AB-PD pacemaker
group. If we examine the effects of the PD forcing
at different frequencies (figure 4), it is clear that
the spontaneous pacemaker input regularized the
free-running chaotic activity of LP in a frequency-
dependent manner.

During spontaneous activity of the subcircuit,
the LP displayed a power spectrum with strong
peaks at the PD spontaneous frequency and its
harmonics. The LP entropy was reduced to S=5.1
bits [6]. The LP was also able to follow at lower
frequencies but as the forcing frequency was re-
duced, the LP power spectra broadened and lost
structure. When the PDs were shut of entirely, the
LP activity displayed a broadband structure and
the entropy increased to S=7.9 bits, essentially
the same as above.

series. By this measure, a power spectrum with a
single peak (a linear periodic system) yields S=0
bits. A spectrum with two isolated peaks (a linear
quasi-periodic system with two possible states)
S=1 bit, a flat or white noise spectrum extending
to 40 Hz (or n=20 976) yields S= log2(20 976)=
14.35 bits. Low values of S, relative to 14.35 bits,
are then interpreted as associated with lower com-
plexity in the oscillations of the system.

As shown in figure 3a, d, an isolated but still
modulated LP neuron behaves irregularly with an
entropy S value of 8.08 bits and a power spectrum
which shows a wide distribution and a broad peak.
When current pulses were applied at a slightly
higher frequency than the free-running neuron,
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Figure 5. Reciprocal synaptic inhibition regularizes the chaotic
bursting of LP and a single PD neuron. (A) Intrinsic bursting of
LP and PD neurons recorded (at different times in the same
experiment) while isolated from circuit interactions. (B) The
same two neurons coupled by reciprocal inhibition. The LP-to-
PD connection is inserted via a dynamic clamp. Conditions: AB,
VD and one PD photoinactivated; PTX. In (A), the LP record-
ing was made with the remaining PD deeply hyperpolarized.

Figure 6. Regimes of oscillations in two coupled neurons. (a)
With no applied current, the slow oscillations are synchronized
while the spikes are not (b) counteracting the natural coupling
leads to independent bursting (c) with net negative coupling, the
neurons burst in anti-phase in a regular pattern (d) when
depolarized by a positive depolarizing current, both neurons fire
a continuous pattern of synchronized spikes. In the figure, ga is
the added synaptic conductance and I the current injected into
the two neurons.

2.4. Mutual regularization by reciprocal inhibition

Can chaotically bursting neurons regularize each
other? When the AB neuron is killed, the PDs also
burst irregularly (figure 5A). When PD and LP
inhibited each other via their normal connectivity,
they adopted anti-phase coordination and regu-
larized their bursting (figure 5B). What with all
natural synapses blocked, and with simulated
synapses inserted via the dynamic clamp [21], we
could show that only reciprocal inhibition (not any
other pattern of connectivity) could produce regu-
larization (unpublished data).

2.5. Synchronization and regularization
by electrotonic coupling

Electrotonic coupling exists between many neu-
rons in the STG. We studied the dynamical effects
of adding artificial electrical coupling in parallel to
the natural coupling between the two PD neurons,

again using a dynamic current clamp device. The
effective coupling could be altered by injecting
equal and opposite current (Ia) into each cell via
microelectrodes such that Ia

( j )=ga(Vj−Vi), where
ga is the added synaptic conductance and VI is the
membrane potential at the soma PDI [20]. Typical
records for added conductances are shown in
(figure 6) [5]. The natural coupling of these neu-
rons synchronized bursts but not individual spikes
(figure 6a). The natural coupling was sufficient to
synchronize spikes during the tonic firing (figure
6d) implying a shunting action of slow membrane
conductances during burst generation. Opposing
the natural coupling via the dynamic clamp causes
the bursting to become more asynchronous (figure

Figure 4. Control of irregular bursting by rhythmic synaptic inhibition: intracellular recordings and Fourier power spectra. In this
configuration, the only strong phasic synaptic input to LP comes from the PD neurons which are part of the pacemaker group. The
rhythmic bursting of the pacemakers was altered by current injection. Left column: simultaneous intracellular recordings from LP and
PD neurons. Right column: corresponding Fourier power [P( f )] spectra for the LP membrane potential, evaluated from long time
series. The displayed frequency range encompasses the slower voltage oscillations. (A) Spontaneous activity of subcircuit. (B) PD
forced to burst at 1 Hz. (C) PD forcing at 0.65 Hz. (D) PD forcing at 0.4 Hz. (E) Free running activity of LP when PD bursting was
shut off by strong hyperpolarization.
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6b) finally leading to out-of-phase bursting and
increased regularization (figure 6c). In this case the
net negative coupling approximates reciprocal
inhibition.

3. Computational and electronic modeling
of STG neurons

Because our analysis of biological neurons had
shown they could be modeled with only three or
four degrees of freedom, we chose initially to use a
familiar simplified model put forward by Hind-
marsh and Rose (HR) [11]. The general form of
this model contains three terms:

dx/dt=ay(t)+bx2(t)−cx3(t)−dz(t)+I (1)

dy/dt=e− fx2(t)− f(t) (2)

dz/dt=m [−z(t)+S(x(t)+h)] (3)

The first three equations represent the original
model where x(t) corresponds to membrane
voltage, y(t) represents a ‘fast’ current and by
making m�1, z(t) a ‘slow’ current. The first three
equations (the 3-D model) can produce several
modes of spiking-bursting activity including a
regime of chaos that appears similar to that seen in
biological neurons.

However the parameter space for the chaotic
behavior is much more restricted than we observe
in real neurons. The chaotic regime is greatly
expanded by incorporation of the fourth term into
the model:

dw/dt=n [−kw(t)+r(y(t)+1)] (4)

Adding this term w(t) to introduce an even
slower process (nBm�1) is intended to represent
intracellular Ca dynamics. Note this also adds a
−gw(t) to the second equation. When this term is
taken into account, the model produces simula-
tions of intracellular activity that are even more
similar to the biological observations. We, as yet,
do not know if the w(t) term actually represents
Ca kinetics in pyloric neurons and experiments are
currently under way to measure Ca transients in
neurons using optical methods.

Because of its relative simplicity, the HR model
was extremely useful in constructing an analog
implementation — an electronic neuron — that
could perform the computations necessary to emu-
late stomatogastric neurons in real time. However
the down side of such a simplified model is that it
is difficult to compare with biological neurons
which are made up of a multitude of individual

conductances and compartments. Since the experi-
mental manipulation of these parameters is crucial
in establishing physiological mechanisms, we also
developed a Hodgkin-Huxley (H-H) type model
that is more biologically realistic than that of
Hindmarsh and Rose. In this second model [7], the
neuron is represented by two compartments, one
for the lumped neuropilar processes and soma and
the other for the axon. The currents we have used
are based on previous descriptions [3, 23] but are
restricted to those that we consider to be the most
important in generating slow wave and spiking
current. In all, five currents are present in the
soma-neuropil compartment (ICa1 low voltage acti-
vated calcium current, ICa2 high voltage activated
calcium current, Ih hyperpolarization-activated in-
ward current, IK(Ca) calcium dependent potassium
current, and a leak current IL). The axonal com-
partment contains the well-known Hodgkin-Hux-
ley currents for spiking – INa, IK, and a leak
current IL. The soma-neuropil compartment also
incorporates intracellular dynamics based on the
model of Li et al. [13]. In this model, cytosolic
(Ca2+) is determined by influx across the plasma
membrane and by uptake and release from the ER
and extrusion by a plasma membrane pump and a
plasma membrane Na-Ca exchanger.

3.1. Modeling of single neurons

The three-dimensional H-R model generates a
time series that looks remarkably similar to the
time series of an isolated LP neuron (figures 2–4,
7), and its strange attractor has the same topology
as the one shown in figure 2. Even without an
equation for the slow Ca dynamics, the model
contains the appropriate mix of slow and fast
dynamics to accurately describe the bursting spik-
ing behavior seen in single isolated pyloric
neurons.

The soma voltage time series trajectories shown
by the Hodgkin-Huxley-calcium model were also
quite similar to those observed in biological neu-
rons [8]. In both cases, the most common feature
was the variability in burst duration. In isolated
LP neurons, the burst periods were in the range of
1–3 s and for the model in the range of 1.5–3 s
with the most frequent period being about 1.7 s. In
the H-H calcium dynamics model, the soma com-
partment produces plateau depolarizations that
produce spiking in the axon compartment. Ca
plays a key role in determining the length of the
plateau and therefore the length of the burst. The
plateau potential is maintained in the model by the
competition between the inward currents [7].
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Figure 7. A Hodgkin-Huxley plus calcium conductance-type model made up of two compartments simulates the irregular bursting of
the LP neuron. The location of the conductances is shown on the cell diagram and their electronic circuit counterpart is shown on
the right. Changes in burst dynamics can be produced by raising the cytoplasmic calcium concentration (middle panel). The lower
panel shows a comparison between the burst activity produced by the model (right) and a biological neuron (left).
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3.2. Synchronization in
two inhibitory coupled model H-R neurons

The simplest minimal circuit that we studied
consisted of two identical synaptically coupled
neurons. We started by looking at inhibitory
synapses because they represent the predominant
synaptic type in the stomatogastric system and
because there has been considerable theoretical
work on reciprocal inhibition as the basis for
alternate bursting in rhythmic motor systems. In
addition, inhibitory synapses appear to play a
major role in coordinating the timing of bursts in
rhythmic systems and in regulating the dynamics
of coupled chaotic neurons. We characterized cou-
pled H-R neurons as having a threshold and a
constant resting potential and added to the equa-
tion describing the membrane potential x1 of one
neuron a synaptic current associated with the ac-
tion of another neuron with potential x2 to give:

Is= − [o+h(t)][x1(t)+Vc ]u [x2(t−tc)−X ]

where o is the strength of the coupling and h(t) a
small zero mean noise term. The model shows
several different regions of synchronization de-
pending on the values of synaptic strength and
synaptic delay. When both are small, there is a
region of complete in-phase synchronization. As
the strength is increased, the neurons become less
synchronized until they fire out-of-phase with one
another. The inhibitory coupling reliably regu-
larized the behavior of the individually chaotic
neurons except when the coupling was very weak.

4. Electronic neurons

Using three and four-dimensional Hindmarsh-
Rose models, we have constructed low dimen-
sional analog electronic neurons (ENs) whose
properties emulate the membrane voltage charac-
teristics of individual stomatogastric neurons [16].
The ENs are simple analog circuits which integrate
the four-dimensional differential equations repre-
senting fast and slow subcellular mechanisms that
produce the characteristic regular/chaotic spiking-
bursting behavior of these cells. A schematic dia-
gram for the EN is shown in figure 8. Our strategy
for building an analog device instead of using
numerical integration of the mathematical model
on a PC or DSP board was due to the fact that
digital integration of the H-H equations is a slow
procedure associated with the two or three differ-
ent time scales in the model We also plan to

Figure 8. Block diagram of the four-dimensional HR+Ca2+

neuron used in our experiments. These neurons were based on
the equations shown in the text and were designed to replicate
the behavior of individual isolated neurons from the lobster
STG. In our experiments the electronic neurons were coupled
to each other electrically as well as via an electronic implemen-
tation of inhibitory and excitatory chemical synapses.

eventually construct real-time networks of the en-
tire pyloric CPG and for a large number of neu-
rons and for this, analog implementation is a
necessity.

4.1. Beha6ior of the single electronic neuron

As mentioned previously, the equation for w(t)
represents an even slower process than z(t) so that
nBm�1 and is included because a slow process
such as the calcium exchange between intracellular
stores and the cytoplasm was found to be required
in Hodgkin-Huxley modeling [7] to fully reproduce
the observed chaotic oscillations of STG neurons.
Both the three-dimensional and four-dimensional
models have regions of chaotic behavior, but the
four-dimensional model has much larger regions in
parameter space where chaos occurs presumably
for the many of the same reasons that calcium
dynamics give rise to chaos in HH modeling
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(figure 7). The main parameters we used in con-
trolling the modes of spiking and bursting activity
of the model are the DC external current I and the
time constants m and n of the slow variables (figure
9). The Lyapunov exponents lI for both the 3-D
and 4-D ENs have positive exponents in both
cases indicating conclusively that the behavior of
the model was chaotic.

4.2. Synaptic connections between ENS

In order to study the functional relationships
between ENs, we also developed circuits to simu-
late excitatory and inhibitory synaptic connections
as well as ohmic electrical connections. Electrical
synapses were implemented by injecting a current
into one of the neurons proportional to the voltage

Figure 9. The electrical behavior of an electronic neuron. A shows a simultaneous time series of the computed state variables x
(membrane potential), y (fast conductance), z (slow conductance) and w (cytosolic calcium concentration). B shows the simulated
activated of two ENs coupled by synaptic inhibition and their phase portraits.
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Figure 10. Positive electrical coupling of two chaotic ENs. Characteristic time series of the membrane potentials x1(t), x2(t) [A–F] as
synaptic conductance GE is varied. Phase portraits (a1–f1) are shown on the right unfiltered and after low pass filtering (a2–f2). (A)
Intermittent out-of-phase activity, (B) nearly independent chaotic spiking-bursting pattern, (C) chaotic oscillations with most bursts
synchronized, (D) periodic oscillations with partial synchronization of the ENs, spikes not synchronized, (E) periodic oscillations with
complete synchronization of the ENs, (F) chaotic but completely synchronized oscillations.

difference between the two membrane potentials
and injecting the same current with the opposite
polarity into the other neuron.

Although chemical synapses could be imple-
mented in analog circuitry, we found it more use-
ful to use software so that we could investigate the

Figure 11. Inhibitory chemical coupling between two chaotic ENs. Characteristic time series of the membrane potentials (A–F). Phase
portraits (a1 to e1) and phase portraits after 20 Hz low-pass filtering (a2 to e2). (A) Chaotic oscillations with all hyperpolarized regions
out-of-phase, (B) periodic pattern with hyperpolarizing regions out-of-phase and some burst superposition, (C) chaotic oscillations,
(D) periodic out-of-phase bursting behavior with some burst superposition, (E) periodic out-of-phase spiking-bursting behavior, (F)
chaotic out-of-phase spiking-bursting pattern.
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role of the synaptic time constant ts. We found the
results of the software and hardware models were
identical for fixed time constants. The electronic
neurons were able to generate the currents corre-
sponding to the graded chemical synapses of STG
neurons in real time described by first order kinet-
ics. The synaptic reversal potentials were selected
so that the currents injected into the postsynaptic
ENs were always negative for inhibitory synapses
and positive for excitatory synapses.

4.3. Electrical coupling between two ENs

When the coupling strength GE:0.0, the two
neurons are effectively uncoupled and display in-
dependent chaotic oscillations. However as the
strength of the coupling increases, some regions of
synchronized bursting begins to appear (figure 10)
including regions where intermittent anti-phase
bursting can be observed. As the coupling is made
stronger the bursting activity becomes regular and
goes from a region of partial synchronization to a
region of total synchronization. Between values of
0.8 and 1, there is total synchronization in the
spiking bursting activity and the oscillations are
chaotic. For negative electrotonic coupling, some-
thing that does not occur in nature, the oscillations
are mostly chaotic and the bursts occur in anti-
phase. As with experiments on biological neurons,
there is a sharp phase transition between nearly
synchronous and fully synchronous behavior [15].

4.4. Excitatory chemical-type synapses
between ENs

When two uncoupled ENs were adjusted to give
independent chaotic oscillations, they became reg-
ularized as they transitioned between simulated
currents 0BGCB100 nS. At very low currents (10
nS) the chaotic activity was replaced by a behavior
in which most of the bursts were synchronized but
the oscillations were still chaotic. At 100 nS all the
bursts became synchronized and the activity be-
comes periodic. At GC\100 nS the bursts remain
synchronized and get longer but there are no
longer any spikes during the final part of the
bursts.

4.5. Inhibitory chemical-type synapses
between ENs

ENs connected with reciprocal chemical in-
hibitory synapses mimic the most common form of
communication between pattern forming neurons

in CPGs. We suggested previously that inhibitory
chemical coupling could lead to regularization of
chaotic oscillations in individual neurons [2]. We
found that with small inhibitory currents the EN
oscillations were still chaotic and all of the hyper-
polarizing regions of the membrane voltages were
in anti-phase (figure 11). As the strength of the
inhibitory synapses were increased, the oscillations
became alternately periodic and chaotic until at
very high synaptic currents long out-of-phase
bursts were observed along with chaotic oscilla-
tions. While these results are consistent with what
we have observed in biological neurons, no direct
comparison of these simulations with biological
neurons has been made. When very strong inhibi-

Figure 12. The pyloric pacemaker group, the AB and PDs
along with the VD neuron are able to sustain bursting after the
glutamatergic synapses are blocked with picrotoxin (A) how-
ever when the AB is photoinactivated (B) the remaining neu-
rons become tonic initially and after about one hour resume
bursting activity.
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Figure 13. A hybrid circuit in which a EN that is firing like AB is inserted into a biological circuit in which AB has been killed. Prior
to the vertical line in the center, the current between the EN and the PDs is shut off and the pyloric rhythm is tonic as shown in the
PD intracellular trace and extracellular LVN trace. After the positive conductance coupling is turned on as shown in the top trace,
the pyloric pattern is reinstituted.

tion is delivered via a dynamic clamp, Ih is acti-
vated sufficiently to keep the oscillations regular
(unpublished).

4.6. Hybrid silicon-biological circuits

One way to test the verisimilitude of our ENs
was to interface them with single biological neu-
rons or with the entire pyloric circuit. It would
then be possible in principle to see if the EN could
substitute for the real neuron under a variety of
perturbations as well as in steady state conditions.
The pyloric system is exceptionally well-suited for
these experiments. The fourteen neuron pyloric
network has one interneuron, the AB, that is

connected to the two PD neurons via electrotonic
junctions (see figure 1). Together these three neu-
rons appear to form the pacemaker for the pyloric
system, setting the frequency and periodicity of the
pyloric pattern. The AB is the strongest neuron of
the three in this respect and because it is robust
and highly periodic it has been difficult to manipu-
late the rhythm when it is intact.

The AB can be removed from the pyloric circuit
by photoinactivation [14] and in some cases gluta-
matergic transmission from other pyloric neurons
onto the PDs was blocked with picrotoxin (7.5
mM). A three-dimensional EN was connected to
the two PD neurons via an artificial electrical
synapse [22] which allowed us to dynamically in-
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teract with the biological neurons rather than sim-
ply providing them with current commands
through a microelectrode.

When the AB was removed from a reduced
circuit leaving only the PDs still connected to the
VD neuron, the normal oscillatory pattern was
immediately disrupted and the PD and VD fired
tonically and irregularly (figure 12). If the EN was
adjusted to fire in bursts similar to those observed
in the AB and then connected to the PDs by an
artificial electrical synapse, the PD now fired syn-
chronously with the EN (figure 13). When the EN
is also made to fire irregularly and then connected
to the chaotically firing PDs, the ENs and the PDs
went immediately into synchronous in-phase
bursting/firing activity (figure 14A).

Similarly, if the electrical coupling was made
negative, bursting/firing activity also ensued but
now was out-of-phase (figure 14B). If the gluta-
matergic activity was blocked, the whole rhythm
became severely disrupted immediately after the
AB pacemaker neuron was photoinactivated. After
about 1 h, the pyloric rhythm again become regu-
larized although not as strongly as before. Replac-

ing the destroyed AB with an artificial AB could
rescue the circuit and the entire rhythm returned
(figure 15). Experiments were also carried out us-
ing a 4-D EN with similar results [16].

Previous efforts using hybrid circuits have been
performed using a digital version of a H-H model
which ran on a DSP board of a PC and was used
to replace PD, LP and PY neurons. This hybrid
circuit demonstrated that many aspects of the py-
loric rhythm could be accurately reproduced [17].
This laboratory subsequently developed VLSI
devices for implementing HH type models and has
used them in hybrid circuits with results similar to
ours but we have found that thus far such complex
neurons are not needed in order to retain the
output properties and dynamical features of the
network.

Modeling with hybrid circuits is an interesting
way of testing how well an electronic neuron can
interact with a small numbers of neurons in a
well-characterized biological CPG. So far, our sili-
con neuron having only four degrees of freedom
appears to be capable of behaving indistinguish-
ably from its biological counterparts. We therefore

Figure 14. Hybrid circuit in which an irregular EN is coupled to an irregular biological PD neuron via positive (A) and negative (B)
conductance coupling. The coupling produces an in-phase and out-of-phase periodic bursting/spiking pattern in the two neurons.
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Figure 15. Same as figure 13 but with negative conductance coupling which can also restart the pyloric rhythm. Note the EN and PD
are out-of-phase in this non-biological condition.

appear to have captured enough of the salient
features of real neurons to allow their substitution
into a small biological network or we have not yet
tested the electronic neuron hard enough to expose
its frailties. We find it remarkable however that
our ENs are not only able to drive the biological
neurons but are also influenced by them as well
i.e., they actually become part of the CPG
circuitry.

5. Conclusions

– The individual neurons in an invertebrate CPG
circuit have membrane potential behaviors that
vary from periodic to irregular but for non-tran-

sient behaviors, they act as low dimensional oscil-
lators.
– Irregularly firing neurons coupled to each other
via inhibitory synapses tend to regularize better
than neurons with excitatory coupling.
– The modified Hindmarsh-Rose model appears
to be able to capture the essential dynamical fea-
tures of stomatogastric neurons and can serve as
the basis for constructing analog electronic neu-
rons which operate in real time.
– Such simple electronic neurons, when interfaced
with biological circuits, behave at the level of
membrane potentials, like neurons.
– The Hodgkin-Huxley model with added Ca
dynamics (1) displays biologically realistic chaotic
regimes and (2) can be used to explore the un-
derlying cellular mechanisms which produce chaos
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and (3) is better than the H-R model in terms
of linking experimental data with theoretical
results.

We now know that chaotic neurons are much
more reliable and diverse in their properties than
was once believed. We have shown in our experi-
ments that a very small collection of chaotic neu-
rons can form an adaptive and flexible pattern
generator which is very sensitive to sensory and
central sources of input.

How does nature use chaos and how do small
neural networks like invertebrate CPGs with
chaotic neurons produce such beautifully regular
patterns? We believe we have begun to answer that
question with the experiments presented here. Of
course a chaotic neuron may not actually have a
function as such and may be chaotic simply be-
cause it is itself a complex nonlinear system. And
questions remains — do CPGs use chaos to their
advantage or do they try to minimize it? Do
stochastic processes influence the dynamic behav-
ior of nerve cells? Nonlinear dynamics gives neu-
rons the flexibility and information processing
abilities that allow them to perform new kinds of
activities. The limit cycle attractors of highly peri-
odic oscillators are rigid while unstable trajectories
use more degrees of freedom — needed if flexibil-
ity and reliability are to be achieved. It appears
that nature has opted for the more flexible
approach.
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