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Abstract
The role of synaptic dynamics in processing neural information is investigated
in a neural information channel with realistic model neurons having chaotic
intrinsic dynamics. Our neuron models are realized in simple analogue circuits,
and our synaptic connections are realized both in analogue circuits and through
a dynamic clamp program. The information which is input to the first chaotic
neuron in the channel emerges partially absent and partially ‘hidden’. Part is
absent because of the dynamical effects of the chaotic oscillation that effectively
acts as a noisy channel. The ‘hidden’ part is recoverable. We show that synaptic
parameters, most significantly receptor binding time constants, can be tuned to
enhance the information transmission by the combination of a neuron plus a
synapse. We discuss how the dynamics of the synapse can be used to recover
‘hidden’ information using average mutual information as a measure of the
quality of information transport.

1. Introduction

The last decade has produced a wealth of experimental findings and modelling studies enhanc-
ing our understanding of the role of synapses in the processing and transmission of information.
Synaptic transmission is an important element in information processing, learning and memory
in the central nervous systems of animals [1–7]. The dynamics of synaptic action is tuned,
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Figure 1. Experimental layout. The input signal consists of unimodal or bimodal Gaussian
distributions of ISIs. The input spike sequence I (t) is generated using a digital to analogue
converter controlled by a computer (PC). The input signal I (t) inhibits neuron EN1 through an
analogue electronic model chemical synapse. EN1 is the presynaptic cell to an excitatory synapse
realized through the dynamic clamp protocol. The time series of the excitatory synaptic activation
S2(t), a dimensionless and rescaled 0 � S2(t) � 1 representation of neurotransmitter binding, is
used for the results described in the text. EN2 is just a reader or decoder of the information coming
through the synapse. Each experiment consisted of choosing an ISI distribution for the input spike
train signal, setting the value of the characteristic time constant of the dynamic clamp synapse, and
acquiring a long time series of the input signal I (t), the membrane potential of EN1, Vm1(t), and
the synaptic activation S2(t). Signals were digitized at 500 Hz and stored for subsequent analysis.

among other factors, by receptor binding time constants and by thresholds in synaptic pro-
cesses. In this paper we investigate features of synaptic dynamics operating as a component of
a neural information transport ‘channel’. The channel we investigate here is shown in figure 1.

Our model information channel,depicted in figure 1, consists of an input current composed
of a spike train I (t) with spikes identical in amplitude and with interspike intervals (ISIs)
prescribed by the distributions given in what follows. These spikes inhibit a neuron called
EN1 through a simple inhibitory synapse whose characteristics are fixed throughout our
experiments. This inhibitory synapse is realized in analogue circuitry. From the analogue
circuit neuron EN1, the signal goes to an excitatory synapse realized in software using our
dynamic clamp program [8]. This permits us to change the characteristics of this synapse
during our experiments. The receptor binding percentage S2(t) at the second synapse sets the
level of the postsynaptic current entering the second analogue circuit neuron EN2 after being
acted on by the dynamic clamp synapse.

Each electronic neuron is realized using a Hindmarsh–Rose (HR) model [9] for bursting
neurons. The synaptic dynamics is represented by a first-order kinetic model of the complicated
process of neurotransmitter release and binding to postsynaptic receptors. Here we identify a
time constant τ associated with the receptor binding process.

Our analogue electronic model neuron (EN) is based on simple models of bursting,
chaotic neurons. These model the typical bursting pattern of cortical neurons [10, 11]. We
used bursting neurons because it has been suggested that bursts enhance the release of the
neurotransmitter [12, 13]. The EN used in our experiments has been shown (1) to have
realistic membrane voltage activity, (2) to be able to replace a biological neuron in a damaged
biological network and in doing so restore the functional activity of the network [10], and (3)
to reproduce, when interacting in pairs, the details of our observations on coupled biological
neurons [14, 15]. The realistic neural activity of the EN has, thus, been quite thoroughly tested.

The detailed equations for our neurons and synapses are discussed below. Each neuron is
described by an equation for the membrane voltage and three other variables corresponding to
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a ‘fast’ current, a ‘slow’ current and an even slower variable associated with slow uptake and
release of calcium in the cell. The synapses are described by a dimensionless, neurotransmitter
induced, receptor binding factor S(t), 0 � S(t) � 1.

We explore this channel by sending a spike train I (t) into the first synapse whose simplified
first-order dynamics is described below. The parameters of the analogue inhibitory synapse
were set so that every time there was a spike in the input signal Vspike(t), itself proportional to
I (t), a negative pulse of amplitude 1.5 V was sent to EN1. In the electronic synapse the time
constant τ1 was fixed at 15 ms. The membrane voltage Vm1(t) from EN1 comes to the second
synapse and via the dynamics of S2(t)produces the postsynaptic current g2S2(t)(Vm2(t)−Vrev2)

entering neuron EN2.
Using the language of information theory [16] we will show that the total amount of

information transmitted through the synaptic dynamics is strongly dependent on the time
constant for receptor binding. We will argue that the synapse is able to recover information that
was hidden during the first stage of transmission because of the complex temporal dynamics
of the chaotic bursting model neuron EN1 [17, 18]. We also show that over an interesting
range for the time constant τ2, the average mutual information (AMI) between an input signal
and a synaptic output is larger than the AMI between the input signal and the membrane
voltage output of the presynaptic bursting neuron. This appears to violate the ‘data processing
inequality’ [19], which states that AMI cannot increase along a chain of information processing
elements. The key to understanding this apparent contradiction is that nonlinear neurons can
dynamically change their coding space in such a way that some information input to a neuron
can become ‘hidden’ in its output. The main objective of this paper is to reveal that dynamical
synaptic action can reveal part of the presynaptic information by tuning itself in a biologically
plausible fashion.

The transformation of information from a ‘hidden coding space’ to a ‘visible coding
space’ by the action of a synaptic dynamics depends strongly on the synaptic characteristics.
In particular, the receptor binding time constant plays an essential role. Hidden and ‘visible’
coding spaces are defined and clarifying examples are given in the appendix.

The postsynaptic neuron EN2 plays the role of reading the message passed along at the
synapse, and the parameters of the synapse must be tuned to the properties of the dynamics
of the postsynaptic neuron so that the information can be read postsynaptically. However, as
we will show, the essential features of information recovery are associated primarily with the
presynaptic terminal. The maximization of AMI between the input signal I (t) and fraction of
bound receptors S2(t) as a function of the time constant τ2 leads us to conjecture an interesting
dependence of short-term learning on synaptic time constants rather than solely on the strength
of the connections among neurons.

In our results in what follows, the information in S2(t) is ‘decoded’ using a threshold
decision process. If the signal S2(t) passes through the threshold value Sthresh with a negative
derivative, it is an ‘event’ and a ‘1’ is recorded. If not, a ‘0’ is recorded.

The threshold level Sthresh is a function of properties of the postsynaptic neuron, as we
discuss below, and can be different for different neurons. Indeed, in [20, 21] the authors discuss
the heterogeneity of synaptic dynamics in the brain, and our results may suggest a basis for
these observations as the amount of information available to the postsynaptic neuron depends
on both Sthresh and the receptor binding time constant τ2.

2. Description of the model

We collect here the full set of dynamical equations for the inhibitory synapse through which
the input current I (t) drives neuron EN1, and the synapse is driven by the output potential
Vm1(t) which is presynaptic to the final neuron EN2. This configuration is depicted in figure 1.
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Figure 2. (a) Shape of the signal Isyn1 that inhibits EN1 when a spike is present in I (t).
(b) Distributions of ISIs used to build the input signal. D2 is a unimodal Gaussian distribution
with average 200 ms and standard deviation 50 ms, D3 is a unimodal Gaussian distribution with
average 500 ms and standard deviation 50 ms, and D1 is a bimodal distribution composed of an
equal mixture of D2 and D3.

2.1. Neuron one—realized in analogue circuitry

dVm1(t)

dt
= F(Vm1(t), u1a(t)) + IDC1 − Isyn1(t)

du1a(t)

dt
= Ga(Vm1(t), u1a(t))

(1)

with a = 1, 2, 3. Isyn1(t) is the synaptic current into neuron one generated by the input spike
train with ISIs selected from one of the distributions in figure 2. The equations for the neurons
are given below.

2.2. Neuron two—realized in analogue circuitry

dVm2(t)

dt
= F(Vm2(t), u2a(t)) + IDC2 + g2S2(t)(Vrev2 − Vm2(t))

du2a(t)

dt
= Ga(Vm2(t), u2a(t))

(2)

with a = 1, 2, 3. IDC is an injected DC current which sets the environment for the operation
of the neuron. F(Vm2(t), u2a(t)) and Ga(Vm2(t), u2a(t)) for a = 1, 2, 3 govern the dynamics
of the variables (Vm2(t), u2a(t)).

2.3. The Hindmarsh–Rose [14, 21] model neuron

Each of the neurons satisfies the dynamical equations ( j = 1, 2):

dVmj(t)

dt
= au j1(t) + bV 2

mj(t) − cV 3
mj(t) − du j2(t) + IDC j − Isyn j(t)

du j1(t)

dt
= e − f V 2

mj (t) − u j1(t) − gu j3(t)

du j2(t)

dt
= µ(−u j2(t) + S(Vmj (t) + h))

du j3(t)

dt
= ν(−ku j3(t) + r(u j1(t) + l)).

(3)

In these equations a, b, c, d, e, f, g, µ, S, h, ν, k, r, e and l are constants which embody the
underlying current and conductance based dynamics. IDC j and Isyn j(t) are, respectively, the
injected DC current and synaptic input. This HR model captures the observed aspect of
neuronal membrane voltage activity while using only four active degrees of freedom [14]. The
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detailed relationship between the model parameters and biophysical parameters is still being
investigated.

In this polynomial representation of the neural dynamics Vmj(t) is the membrane voltage,
and u j1(t) represents a ‘fast’ current. We choose µ � 1, so u j2(t) is a ‘slow’ current.
u j3(t) represents an even slower dynamical process (ν < µ � 1) and is included because
a slow process, possibly representing the calcium exchange between intracellular stores and
the cytoplasm, was found to be required in Hodgkin–Huxley modelling to fully reproduce the
observed chaotic oscillations of stomatogastric ganglion neurons [22].

In our analogue circuit realizations of the ENs we used the values e = 1.0, b = 3, c = 1,
d = 0.99, e = 1.01, f = 5.0128, g = 0.0278, µ = 0.002 15, S = 3.966, h = 1.605,
ν = 0.0009, k = 0.9573, r = 3 and l = 1.619. These values are estimated from the analogue
electronic components, and are known with a 5% tolerance.

EN1 was set to generate tonic spiking behaviour by choosing IDC1 = 7.48. This is
just above the transition to spiking bursting behaviour. EN2 was set into periodic bursting
behaviour by setting IDC2 = 2.50. This is just below the threshold for chaotic bursting. These
values were chosen as they emphasize the role synaptic dynamics plays in the information
recovery we will demonstrate in what follows.

2.4. Synaptic model

Our model synapse implements the dynamics of chemical synapses using a first-order kinetic
model of neurotransmitter release [23, 24]. The current Isyn1(t) injected in a postsynaptic cell
is determined by the dimensionless, scaled synaptic activation S1(t); 0 � S1(t) � 1 via

Isyn1(t) = gsyn1S1(t)(Vm1(t) − Vrev1)

τ1
dS1(t)

dt
= S∞1(Vin(t)) − S1(t)

S0 − S∞1(Vin(t))

(4)

where Vrev1 is the synaptic reversal potential. Vin(t) is the presynaptic voltage which we take
proportional to the input current I (t). Vm1(t) is the membrane potential of the postsynaptic
neuron; here neuron one. τ1 is the timescale governing receptor binding associated with
synapse one. S∞1(V ) is given by

S∞1(V ) =
{

tanh[(V − Vth1)/Vslope1] if V > Vth1

0 if V � Vth1
(5)

and S0 � 1.
The dynamics of synapse two, realized in dynamic clamp software, and the synaptic

current Isyn2(t) entering neuron two are determined by

Isyn2(t) = gsyn2S2(t)(Vm2(t) − Vrev2)

τ2
dS2(t)

dt
= S∞2(Vm1(t)) − S2(t)

S0 − S∞2(Vm1(t))

(6)

where Vrev2 is the synaptic reversal potential. Vm1(t) is the presynaptic voltage from neuron
one. Vm2(t) is the membrane potential of the postsynaptic neuron; here neuron one. τ2 is the
timescale governing receptor binding associated with synapse one. S∞2(V ) is given by

S∞2(V ) =
{

tanh[(V − Vth2)/Vslope2] if V > Vth2

0 if V � Vth2
(7)

and S0 � 1.
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In our experiments we implemented the excitatory chemical synapse postsynaptic to EN1
and presynaptic to EN2 using the parameters g2 = 350 nS, Vrev2 = −20 mV, Vth2 = −24 mV
and Vslope2 = 1 mV. We varied τ2 over the range 2 ms � τ2 � 48 ms in steps of 2 ms. Since
we were not interested in changing any parameters of the inhibitory synapse between the input
signal generator and EN1, we used an electronic analogue circuit that emulates an inhibitory
chemical synapse as described previously. This synapse was simply tuned to provide EN1
hyperpolarizations only for a few incoming spikes.

3. Experiments, information statistics

We built a small, simplified chain of neural processing elements as shown in figure 1. These
elements are realized using analogue circuit neural models [14, 18], synaptic models realized
by analogue circuits and by our dynamical clamp program [8].

The input signal I (t) is numerically generated and consists of long sequences of spikes
with a unimodal or bimodal distribution of ISIs. We used three different ISI distributions (fig-
ure 2(b)): D1 consists of a bimodal distribution composed of one ‘fast’ Gaussian with mean
200 ms and standard deviation 50 ms along with a ‘slow’ Gaussian centred at 500 ms and also
with a standard deviation of 50 ms; D2 consists only of the ‘fast’ Gaussian; D3, of just the
‘slow’ Gaussian. The bimodal distribution was inspired in some features of the different spik-
ing/bursting timescales present in real neurons. The shape of each spike is shown in figure 2(a).
The program used to generate the input signal first determines the sequence of ISIs according
to a chosen distribution and, using a digital to analogue converter, then generates an analogue
output voltage corresponding to the model spikes at the times determined by the ISI sequence.

The entropy of a stimulus sequence such as our DK (K = 1, 2, 3) tells us how much
information, in bits, is brought by that sequence to the receiving neuron. Suppose the sequence
is encoded as a set of symbols sk from a set S = {s1, s2, . . . , sK }; this means the waveforms
of the stimulus time course s(t) are represented by an alphabet with K elements. (We discuss
below the details of our encoding of each of the waveforms Vspike(t), S1(t), Vm1(t), S2(t), and
Vm2(t).) Words made from this alphabet capture ‘events’ in the waveform, such as the presence
or absence of a spike. If the stimulus symbols have a distribution PS(sk), the entropy [16] of
this symbol set is given by HS = − ∑

{sk} PS(sk) log2[PS(sk)]. We evaluated the entropy
HS(DK) of each of our input or stimulus distributions. It ranges from 7.5 bits for D2 and D3
to about 7 bits for D1. For an isolated Gaussian of standard deviation σ , such as our D2 and
D3 distributions, the entropy is

HS (D2 or D3) = 1
2 [1 + loge(2πσ 2)], (8)

in ‘natural’ units. For us σ = 50 ms, so HS (D2 or D3) is about 7.7 bits. This is the maximum
information that could be read at any junction in the subsequent network of neurons and
synapses. We show in figure 4 that our neurons and synapses, at best, are able to read about
2.6 bits from this ISI sequence stimulus.

Our ‘transmission channel’ works reasonably well for the kind of input sequences we
choose to transmit; namely, sequences of spikes with various distributions. Would it work better
with other sequences? It is quite possible, but the question in neural transmission of information
or, equivalently in neural encoding, is how sequences, representative of biologically observed
inputs, are treated by the channel. This is quite distinct from the kind of questions a transmission
engineer might ask of this channel. For the latter purposes one would seek an encoding of the
input information to maximize the information throughput, and success is measured in how
close one comes to the entropy of the source. We are given the sequences to transmit, namely
representations by spike trains of external stimuli,and need to evaluate how well networks carry
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this encoded information. The Gaussian (or bimodal Gaussian) distributions we have chosen
represent nearly periodic input with some jitter. Other distributions, in particular Poisson,
would be of interest as well.

The conventional framework views a neuron in an information transmission role as a
passive element unable to generate its own information. However, real chaotic neurons do
generate information. The output from a chaotically oscillating neuron has positive entropy,
associated with the instabilities which lead to chaos in the first place [17]. The intrinsic
dynamical behaviour of a neuron participating in transferring information depends on the
properties of the incoming information signal. For example, a neuron which undergoes
subthreshold oscillations may produce action potentials only on receiving an appropriate input.

We analyse information transmission by coding bursts of neural activity, so we have placed
EN1 in our experimental set-up close to the threshold of bursting activity. This permits the
incoming signal to move the neuron above its bursting threshold, and the outgoing signal from
EN1 is quite sensitive to the input. If we were to place EN1, for example, well below threshold,
it would be rare for an incoming signal to generate significant output activity. Because EN1
can show chaotic oscillations, its output signal Vm1(t) carries information both about the input
and the intrinsic dynamics of EN1.

In the scheme of the experiments shown in figure 1 EN2 is exhibited with a dotted curve
because all the relevant information processing was contained in the synaptic activation S2(t).
Our earlier paper investigating information transmission [17] noted information recovery using
the AMI between the source and the membrane voltage in neuron EN1 AMI(I, Vm1) and
AMI(I, Vm2), the AMI between the source and the membrane potential in EN2. Here we are
able to identify the dynamical synapse as the essential element in this process. Vm2(t) plays
only the role of an ‘information reader’ which receives the information from the presynaptic
neuron. It does not enter our discussion further, though if we wished to know properties of
the membrane voltage activity of the postsynaptic neuron, we would have to solve our model
equations for Vm2(t) and account for its presence in Isyn(t). Also the threshold level Sthresh

used for reading information must be properly tuned to be in accord with properties of the
postsynaptic neuron, as we noted earlier.

For each of the three ISI distributions we created 24 data files corresponding to different
values of τ2 in the range 2 ms � τ2 � 48 ms sampled every 2 ms. Each data series is an hour
long, and uses a sampling rate of 500 Hz. We recorded time series for the input signal I (t),
for the membrane potential of EN1 Vm1(t), for the neurotransmitter release S2(t), and for the
membrane potential of EN2 Vm2(t). This sampling rate is too low for studying the detailed
shape of spikes but is accurate enough for the detection of spikes, bursts and hyperpolarizations
of the ENs.

To characterize the quality of transport of information from a sequence of stimulus symbols
{sk} to a location in the network which produces a sequence of response symbols {rl}, we use
the mutual information between these symbols [16], and then average over this statistic on the
symbol sets {sk} and {rl} to determine the AMI.

The mutual information, in bits, between a symbol sk and a symbol rl is

log2

{
PS R(sk, rl)

PS(sk)PR(rl)

}
.

This answers the question: how much in bits do we learn about a symbol sk in the stimulus
sequence from an observation of a symbol rl in the response sequence? PS R(sk, rl) is the joint
distribution of stimulus and response symbols. PS(sk) is the distribution of stimulus symbols,
and PR(rl) is the distribution of response symbols.
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The AMI between these two sets of sequences S = {s1, s2, . . . , sK } and R =
{r1, r2, . . . , rL } having the joint distribution PS R(sk, rl) is

AMI(S, R) =
∑

{sk},{rl }
PS R(sk, rl) log2

{
PS R(sk, rl)

PS(sk)PR(rl)

}
.

This answers the question: how much, in bits, do we know about values from the set A
from measurements on the set B on the average over all data from each set? AMI(S, R) =
AMI(R, S). AMI gives us a nonlinear measure of the way in which variations in the output of
a neural process are connected with variations in the input.

We calculated the AMI between I (t), and Vm1(t), AMI(I, Vm1) and the AMI between
I (t) and S2(t), AMI(I, S2). If the transmission channel contained only passive elements,
then the ‘data processing theorem’ tells us that AMI(I, Vm1) � AMI(I, S2). Our channel, of
course, has dynamical units—the neurons and the synapses—so whether this result holds is
a question to be addressed. The failure of this ‘theorem’ could arise if the dynamics of the
channel elements added degrees of freedom not accounted for in the measurements of Vm1(t)
or S2(t) alone. That is, we might have to make measurements of other quantities to enlarge
the coding space or possibly have to use time delays of these measurements in accord with
familiar practice in nonlinear dynamics [25] to achieve the same end.

To implement these calculations we must define a finite coding of the information in each
signal. We chose the following: each time series was resampled using time windows of size �t
starting at 2 ms, the minimum size possible as we sampled the data at 500 Hz, then proceeding
in steps of 2 ms up to 500 ms. For each �t we attributed to each window a bit indicating
the occurrence, a ‘1’, or the nonoccurrence, a ‘0’, of an event in this window. One ‘event’
in the stimulus spike train input I (t) is a spike, and, since the input spikes inhibit EN1, we
defined one event in Vm1 as a hyperpolarization of the membrane potential of the neuron. We
defined an event in the time course S2(t) to be a ‘1’ when S2(t) moves down through Sthresh ,
and a ‘0’ otherwise. So the coding spaces that we consider are ‘neuron hyperpolarization’ and
‘neurotransmitter binding factor moving down through a threshold’.

Both criteria have neurobiological meaning: the first signifies that an initiating spike
occurred to start information transmission. As spiking is widely regarded to be the primary
means of information transmission, this is critical. The second criterion signifies that the
percentage of bound receptors has reached a certain level Sthresh above which synaptic current
flows to carry neural information forward through the channel. It would have been entirely
equivalent to use the rise of S2(t) through this threshold as an ‘event.’

Event detection was carried out by comparing the value of the time series to a selected
threshold level: 0.2 V for the spikes in I (t), −42 mV for Vm1(t) and different values of Sthresh

for S2(t). Starting at the beginning of the strings of resampled and encoded data we built
digital words of 8 bits. First we measure bits from the first eight windows of size �t . Moving
one window to the right we built another word of 8 bits, and so on. This word size allows us
to deal with the full information content of the input stimuli, D1, D2 and D3, each of which
carry about 7.5 bits of information. A word size of eight bits is the minimum we could use to
allow the full information in our input spike trains to be represented by any coding scheme. In
fact the neural channel we construct passes only about 2.5 bits of the total allowed.

Using the sequence of words from all the signals we calculated the probabilities of finding
a specific word in a signal as well as the joint probabilities between each two signals. With
these probabilities we used standard procedures [26, 27] to obtain the AMI between I and Vm1

and between I and S2. We also calculated the bias corrections [28, 29] for all the information
estimations due to limited sampled data. Estimates of AMI and other information theoretic
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Figure 3. Example time series obtained using D2 as input and various τ2. (a) τ2 = 2 ms.
(b) τ2 = 26 ms. (c) τ2 = 48 ms. In (b) an asterisk marks events that cannot be detected using a
threshold level Vthresh in Vm1(t) but that can be easily detected using a threshold level Sthresh for
S2(t). If τ2 is too small, (a), the information cannot be recovered using threshold levels because the
effect of the spikes of the presynaptic cell have large amplitudes in S2(t), and the current decays
so rapidly that it mixes events and the baseline of the spikes at the bottom of the trace; for τ2 too
large, (c), both spikes and events have small amplitudes, and is also more difficult to separate them.
This suggests there may be a τ2 where recovery is maximized.

statistical quantities depend on the number of data. In each calculation we carefully checked
that each AMI had become independent of the number of data used in its estimation.

4. Results

Typical experimental time series corresponding to different values for the time constant τ2

are shown in figure 3. The input distribution for the examples displayed in figure 3 is D2.
Looking first at figure 3(a) we see that there is no recovery of the event ‘spike in the input’
at τ2 = 2 ms because we are not able to distinguish any specific ‘S2(t) event’ within the
collection of observed spikes. However, the neuron is able to respond to some spikes with a
few hyperpolarizations.
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When τ2 is increased to 26 ms, we detect only a few spikes in Vm1(t) by seeing a few
strong hyperpolarizations, but most of the input spikes are not detected in Vm1(t) and thus,
they are missing in our coding space; see figure 3(b). On the other hand, the synapse is able
to respond to this event by crossing the threshold value most of the time. Therefore, in this
example when we record a long time series and calculate AMI(I, Vm1) and AMI(I, S2) we
obtain a higher value for the second of these. The ‘Vm1(t) events’ are missing because they
have been hidden in the nonlinear activity of EN1.

In figure 3(c) we show another case where we have selected τ2 = 48 ms to qualitatively
indicate that the spike detection at the synapse is a little bit worse. This suggests that there
may be a τ2 for which information transmission has a maximum. A qualitatively similar result
is found in the study of modelling input signals from spike trains [30].

This example illustrates the basic working mechanisms of our hypothesis that learning and
possibly other critical neural processes may be also strongly influenced by receptor binding
time constants in synaptic activity rather than only by the maximal conductance values at
synapses. To quantitatively establish that the visual impression is correct, we collected large
quantities of data and calculated the three AMI values associated with I (t), Vm1(t), and S2(t).
In figure 4(a) we present the maximum of AMI(I, S2) as a function of the synaptic time constant
τ2 and of the coding threshold Sthresh . The maximum is taken over the window size �t used
for the encoding and for each distribution it was always found around the same �t : for the
input ISI distribution D1 the maxima were all about �t = 0.21 s; for D2, about �t = 0.14 s;
and for D3, about �t = 0.4 s.

Figure 4(b) shows the quantity max{AMI(I,S2)−AMI(I,Vm1)}
max{AMI{I,S2)} as a function of the synaptic time

constant τ2 and of the coding threshold Sthresh . These calculations were made with the
bimodal ISI distribution D1. It is clear that the regions of parameter space (τ2, Sthresh )
where the maximum recovery of information occurs roughly coincides with the regions of
maximum total information transmitted. For each coding threshold Sthresh , the synapse can
‘tune’ to maximum information recovery by adjusting the time constant τ2 appropriately.
For example, if the threshold Sthresh is set at 0.2 a value of τ2 = 15 ms, will give the maximum
information recovery, here about 30% of the total information transmitted. This is a substantial
improvement in the ability to transmit information resulting from the action of the dynamical
synapse. Quite similar results came from the use of the unimodal distributions D2 and D3.

In figure 5 we present the plots of maximum (over window size �t) of max{AMI(I, S2)−
AMI(I, Vm1)}.

5. Discussion

Using an experimental ‘information channel’ we have investigated issues associated with how
information is transmitted through such a channel when it is composed of dynamically active
neurons and synapses. Our channel, shown in figure 1, was constructed from model analogue
circuit neurons which have been extensively tested in their membrane voltage activity perfor-
mance against the similar performance of biological neurons. The synapses entering our net-
work were an inhibitory synapse implemented in an analogue circuit with fixed parameters and
an excitatory synapse implemented in software on a PC using our dynamic clamp software [8].
In the latter synapse we were able to vary critical parameters, especially the time constant τ2.

Our experiments consisted of stimulating the channel through an inhibitory synapse with
spike trains of specified ISI distributions, and then recording dynamical variables representing
the membrane voltage Vm(t) and the dimensionless, scaled neurotransmitter binding factor
S(t) through the rest of the network. Our primary analysis tool was the evaluation of AMI
between the input stimulus and the activity at downstream locations in the channel.
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Figure 4. AMI and recovered information. (a) Maximum of AMI(I, S2) as a function of the
synaptic time constant τ2 and the neurotransmitter threshold Sthresh . The maximum is over the
window sizes used to encode the data; see the text for details. Outside this region of τ2 and Sthresh ,
the data processing inequality holds, and no information is ‘recovered’ by the dynamical synapse.
Note that the maximum possible AMI(I, S2) is the entropy of D1 (about 7.5 bits), so there is some
information loss at EN1. (b) max{AMI(I, S2)−AMI(I, Vm1)}/ max{AMI(I, S2)} as a function of
τ2 and Sthresh . This indicates how much of the total information shown in (a) comes from recovery.
The input was D1 for these results.

The essential results of this study are captured in figures 4 and 5 where we show that
AMI(I, S2), the AMI between the spike train stimulus and synaptic output, was larger than
AMI(I, Vm1), the AMI between the stimulus and membrane voltage presynaptic to the synapse
over a large range of time constants τ2 associated with synaptic properties. This means that
the dynamical synapse is able to recover information not readable though observation of its
presynaptic membrane voltage.

This result appears to violate the so-called ‘data processing theorem’ [19], but we have
argued that it is a natural consequence of the active dynamics built into the neurons and
synapses in our network. It is essential for our results that the dynamical actions of neurons
in the network, in particular EN1, can ‘hide’ information through their chaotic oscillations
and that the dynamical actions of synapses in the network can recover this information. The
quantitative statement of this is found in figure 5.

Equally important is the fact that figure 5 shows us that this information recovery can be
maximized by appropriate choices of synaptic time constants τ2 properly tuned to the sensitivity
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Figure 5. Maximum information recovery AMI(I, S2) − AMI(I, Vm1) in bits as a function of
τ2 and Sthresh for the three ISI distributions used in our experiment. (a) D1, (b) D2, and (c) D3.
(a) and (b) have the same scale as (c).

of the postsynaptic cell as represented in the threshold for decisions decoding the information
output by the dynamical synapse. Moreover, the values of τ2 that optimize the information
recovery are exactly in the range of the values of neurobiological synaptic time constants.

The latter observation led us to conjecture that observed heterogeneity in neural
assemblies [20, 21] may well be expressions of this tuning of various neurons in the networks
to achieve maximum information deposition at locations where the information is best used
for functional purposes.

From our computations we are led to suggest that a natural ‘unit’ of information processing
in nervous systems is not the component neurons alone, but the well constructed and tuned
combination of neurons and their dynamical synapses. Clearly this idea will be clarified by
further simulations on networks of increasing complexity and with understandable specific
functional goals.
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The ability of the dynamical synapse to recover information not readable from Vm1(t)
hinges on the fact that the stimulus signal and the intrinsic dynamical variation in the neural
oscillations are distinct. Thus one is able to separate them dynamically. This feature is used
widely in strategies for communication using chaotic waveforms [31].

Finally let us repeat that our calculations have been performed using realistic, well tested,
analogue electronic implementations of a reduced model neuron and analogue electronic and
computer simulations of the dynamical synapses. These are certainly suggestive of important
dynamical processes in nervous systems, but we must proceed to the investigation of the
information processes suggested here in hybrid (electronic and biological) networks and,where
we are able, in strictly biological networks. This is in progress in our laboratory.
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Appendix. Coding space; hidden information

A.1. Coding space

To apply information theory to neural signals we need to define a way to encode the signals
found in neural activity. A first step is to define what is an individual ‘event’. Usually the
definition of an event is related to the kind of observation one is making. Suppose one is
applying inhibitory input to a neuron. If the input is able to hyperpolarize the neuron, under
certain conditions, an event can be defined as the start of hyperpolarization of the neuron. If
the hyperpolarization is sufficient to terminate spontaneous firing or is superimposed upon an
already bursting neuron, these events define what we call a bursting code. If one is interested
in the role of spikes in neural activity we can establish a spiking code, in which each spike is
an event.

An event (hyperpolarization, burst or spike) is detected by comparing the signal with some
threshold level and looking for the crossings of the threshold level in a particular direction. We
show an example of this coding for the bursting code in figure A.1. We measure a long time
series of the membrane potential with total length in time N�T . Split the signal into N bins
of length �T and look in each bin for downward crossings of a threshold Vthres by the signal
voltage. Every time the signal crosses Vthres in the downward direction we attribute a ‘1’ to the
bin where the crossing occurred. To the remaining bins, where no downward crossing occurs,
we attribute a ‘0’. In this way a string with N bits is formed.

The next step is to build words of length L bits. Starting from the beginning of the string
of N bins, we use L bits to build the first word W1. Moving �T to the right in the string we
use the next L bits to create the word W2. By repeating this process until the full string is used
we will form a total of N − L + 1 words of L bits each. In this encoding scheme we have
an ensemble of N − L + 1 items {W1, W2, . . . , WN−L+1} each composed of one of 2L distinct
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Figure A.1. Encoding a neural signal using a bursting code. A signal of total length N�T is split
into N bins of length �T . A string of N bits is built by looking in each bin for the occurrence
of an event (in this example the crossing of the level Vthres by the membrane potential of the
neuron during hyperpolarization) these are marked with circles in the figure. If there is an event,
we attribute a ‘1’ to the bin, otherwise we attribute a ‘0’ to the bin. Words of length L bits are built
starting from the beginning of the string to determine the first word W1, then moving �T to the
right to obtain a new word W2. The process is repeated until N − L + 1 words are formed. This
gives us an ensemble of N − L + 1 words drawn from a selection of 2L distinct words.

Figure A.2. Information ‘hidden’ in the neural signal. The upper trace shows a sequence of
inhibitory spikes that provide inhibition to a cell whose membrane potential time course is shown
in the lower trace. Using a threshold level to detect the events (here, hyperpolarizations of the cell)
it is only possible to discriminate some of the information introduced in the cell by the sequence of
inhibitory spikes. If we make Vthres higher, the effect of the spikes marked with ∗ can be detected,
but some of the events (marked with h) are impossible to discriminate using this coding. If one
makes Vthres high enough to detect all of the incoming spike events, all other spikes in the cell
will be misinterpreted as events too. In this case the information about the sequence of inhibitory
inputs is not contained in a single code, rather it is stored partly in the bursting code and partly in
the spiking code of the cell.

words {w j : w1, w2, . . . , w2L }. Counting the frequency of occurrence of each distinct word
w j we can determine the probability distribution PW (w j). If we have two different signals,
encoding both signals enables us to calculate the joint probabilities and thus the AMI between
the signals.

A.2 ‘Hidden’ information

What happens if the information about some stimulus generates a more complex behaviour in
the target cell? For example, suppose a sequence of spikes inhibits a bursting cell. Sometimes
the input spike occurs at a moment in which the cell hyperpolarizes, and other times it happens
when the neuron is firing and is able only to inhibit the production of a single spike, but no
hyperpolarization is observed, as illustrated in figure A.2. If we use the procedure of threshold
crossing to detect events, only a small amount of information about the sequence of stimuli
can be distinguished in the membrane potential of the cell. If the threshold level is made
higher, more events can be detected (these are marked with asterisks), improving the total
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input information revealed, but some events (marked with an h) are not detected using the
threshold level criteria unless the threshold is put at such a high level that all spike maxima
in the target cell will be misinterpreted as events. This is a feature of the method of coarse
graining the neural signals.

Now the information contained in the input sequence is still present in the membrane
potential of the cell, but it is ‘hidden’ from the threshold coding method. Part of the information
is contained in the hyperpolarizations and part of it is in the spiking behaviour of the cell. The
dynamical synapses implemented in this paper are able to recover the information ‘hidden’ in
the spiking of the neuron and to translate it back to a readable threshold coding.
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