
Abstract. Chaotic bursting has been recorded in syn-
aptically isolated neurons of the pyloric central pattern
generating (CPG) circuit in the lobster stomatogastric
ganglion. Conductance-based models of pyloric neu-
rons typically fail to reproduce the observed irregular
behavior in either voltage time series or state-space
trajectories. Recent suggestions of Chay [Biol Cybern
75: 419±431] indicate that chaotic bursting patterns can
be generated by model neurons that couple membrane
currents to the nonlinear dynamics of intracellular
calcium storage and release. Accordingly, we have
built a two-compartment model of a pyloric CPG
neuron incorporating previously described membrane
conductances together with intracellular Ca2� dynam-
ics involving the endoplasmic reticulum and the
inositol 1,4,5-trisphosphate receptor IP3R. As judged
by qualitative inspection and quantitative, nonlinear
analysis, the irregular voltage oscillations of the model
neuron resemble those seen in the biological neurons.
Chaotic bursting arises from the interaction of fast
membrane voltage dynamics with slower intracellular
Ca2� dynamics and, hence, depends on the concentra-
tion of IP3. Despite the presence of 12 independent
dynamical variables, the model neuron bursts chaoti-
cally in a subspace characterized by 3±4 active degrees
of freedom. The critical aspect of this model is that
chaotic oscillations arise when membrane voltage
processes are coupled to another slow dynamic. Here
we suggest this slow dynamic to be intracellular Ca2�

handling.

1 Introduction

Even when deprived of noisy inputs, many neurons
spike in variable or irregular patterns. Such activity is

di�cult to simulate in model neurons built according to
the Hodgkin-Huxley formalism of membrane conduc-
tances. It is the goal of this article to show that a
conductance-based neuron model can generate complex
variable burst patterns when augmented by biologically
plausible intracellular Ca2� dynamics. Our modeling
work is motivated by the experimental observation of
irregular bursting in synaptically isolated neurons of the
pyloric central pattern generator (CPG) circuit of the
crustacean stomatogastric ganglion (STG) (Bal et al.
1988). Analyses of voltage time series of one such
neuron (the lateral pyloric, LP) have shown a wide
region of voltage-dependent behavior in which the cell
generates bursts of highly variable duration in a
seemingly chaotic pattern (Abarbanel et al. 1996). The
chaotic spiking-bursting behavior of living STG neurons
is not adequately reproduced by existing conductance-
based models (Buchholtz et al. 1992; Turrigiano et al.
1995). Simpli®ed models such as those of Hindmarsh
and Rose (1984) or Chay (1996) are useful for phenom-
enological analysis (Abarbanel et al. 1996), but to gain a
deeper understanding one must build realistic models
that incorporate membrane conductances and include
spatial aspects of the neuron and slower intracellular
processes. In this article the source of additional slow
dynamics is Ca2� exchange between the cytosol and
intracellular stores.

We suggest a two-compartment model of the STG
neuron. The two compartments re¯ect the spatial
structure of the neuron. An ``axon'' compartment is
responsible for spiking activity while a ``soma/neuro-
pil'' compartment produces slower voltage oscillations
(underlying bursting activity) (Hartline and Graubard
1992). The simulation of membrane conductances is
based on previous descriptions (see Buchholtz et al.
1992; Turrigiano et al. 1995). The soma/neuropil
compartment also incorporates Ca2� exchange between
the endoplasmic reticulum (ER) and the cytosol, reg-
ulated by an intracellular messenger inositol 1,4,5-
trisphosphate (IP3). These complex calcium dynamics
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change the behavior of the membrane voltage, pro-
ducing irregular bursting activity with clear qualitative
and quantitative similarities to experimental observa-
tions.

The calcium release channel of the ER is assumed to
be an inositol 1,4,5-trisphosphate receptor channel
�IP3R�, as modeled by Li et al. (1997). The presence of
this channel remains hypothetical for STG neurons but
has been demonstrated in several other neuronal types
(Otsu 1990; Satoh 1990; Walton 1991). IP3 is produced
in a bifurcating pathway together with diacylglycerol
when agonists bind to a family of G-protein-linked re-
ceptors or to receptors linked by tyrosine kinase (Ber-
ridge 1987, 1993a,b). IP3 functions to release Ca2� from
the ER (Berridge 1987) and plays a role in fertilization
and development, cell growth, cell transformation,
neuromodulation, and plasticity (Bootman and Berridge
1995). In particular, it has been suggested that IP3

modulates Ca2� oscillations in several cells (Berridge
1987). Receptors for IP3 di�er with respect to their
sensitivity and conductance. However, the essential dy-
namics of interaction between membrane voltage and
intracellular Ca2� most likely do not depend on these
speci®c details, as long as the Ca2�-releasing channel
receives feedback (1) from cytosolic Ca2� (calcium-in-
duced calcium release) and (2) from the ®lling state of
the intracellular Ca2� store. These conditions are met by
di�erent IP3 receptors (Pozzan 1994). We have adopted
a model of IP3R function recently proposed by Li et al.
(1997).

Here we report that varying the concentration of IP3,
�IP3� allows the model neuron to produce both regular
oscillations and chaotic behavior. These ®ndings suggest
new experiments to elucidate Ca2� oscillations and the
impact of IP3 in the biological neurons. Furthermore we
provide a nonlinear dynamical comparison (Abarbanel
1996) of the output of the model and of the pyloric CPG
neuron as measured in our laboratory. This quantitative
comparison reveals that each produces low-dimensional
dynamics with 3 or 4 active degrees of freedom. The
model has 12 independent dynamical variables, and
these contract to a subspace of the full state space of the
system.

We have identi®ed a biologically plausible source ±
slow internal Ca2� exchange ± for the production of
chaotic behavior in otherwise regular Hodgkin-Huxley
dynamics. At present we do not have direct experimental
evidence to support our proposal, although exploratory
experiments are underway. However, the key ingredient
of this article is the understanding that additional slow
dynamics are essential if conductance-based models are
to simulate (qualitatively and quantitatively) the com-
plex irregular spiking and bursting activity observed in
the STG neurons.

2 The model

The equations of the mathematical model are given in
Appendix B. There are two compartments in our model.
With one we represent the neuropil and the soma

[membrane voltage V �t�], and with the other we
represent the axon [membrane voltage V1�t�]. We locate
the slow wave generator for voltage dynamics in the
soma/neuropil compartment and the fast generator for
spikes in the axonal compartment. The action potentials
generated in the axon spread passively back through the
neuropil, reaching the soma (the site of intracellular
recordings in experiments) with a ®nal amplitude of
about 10 mV. There, they appear as spikes on top of the
slow oscillations generated in the soma/neuropil com-
partment (see Fig. 1). This distribution of conductances
and these electrotonic properties resemble those of the
biological neurons in the stomatogastric ganglion (Hart-
line and Graubard 1992).

Our currents are based on previous descriptions
(Buchholtz et al. 1992; Turrigiano et al. 1995) but are
restricted to those that we assume are indispensable for
generating appropriate voltage activity. A coupling
current, IV ;V1

, ¯ows between the two compartments in
proportion to their voltage di�erence. These voltages are
also determined by a speci®c set of membrane currents
in each compartment.

There are ®ve membrane currents in the soma/neu-
ropil compartment:

� Small maximum conductance Ca2� current ICa1: This
current has a fast low voltage activation. It inactivates
on a slower time scale. The major function of ICa1 is to
initiate the transition from low membrane voltage to
the plateau level.

� Large maximum conductance Ca2� current ICa2: This
current creates the plateau. It activates at higher
voltage than ICa1 and does not inactivate.

� Hyperpolarization-activated inward current Ih: This
current is responsible for restorative depolarization
following a strong hyperpolarization of the mem-
brane.

� Ca2� dependent K� current IK�Ca�: This current acti-
vates at high voltage. It increases with cytosolic
�Ca2��. It is crucial for the termination of the plateau.

� Leak current Il.

Three membrane currents underlie spike generation in
the axon compartment:

� Fast Na� current INa: This current generates spikes, if
V1�t� is above ®ring threshold.

� Delayed recti®er K� current IKd: This current repo-
larizes the membrane during spike generation.

� Leak current Il.

The soma/neuropil compartment also incorporates
intracellular Ca2� dynamics based on the model of
Li et al. (1997). Cytosolic �Ca2�� is determined by
in¯ux across the plasma membrane �ICa2 and ICa1�,
by uptake and release from the ER, and by extrusion
by a plasma membrane pump and a plasma membrane
Na�-Ca2� exchanger. The model for Ca2� release from
the ER is based on the IP3-sensitive channel. There are
three binding sites assumed on the IP3 receptor
�IP3R�: an activating site for IP3, an activating site
for Ca2�, and an inhibiting site for Ca2�. If IP3 and
Ca2� are bound to the activating site, the channel is
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open and releases Ca2� out of the ER. The binding of
Ca2� to the inhibiting site is considerably slower and
closes the channel. In this way the channel opens at
low concentration of cytosolic Ca2� and closes at
high �Ca2��. The refractory state of the receptor is
determined by the dissociation of Ca2� from the
inhibiting site. Ca2�-ATPases pump Ca2� back into
the ER. Since in the framework of this model �IP3� is
assumed to be constant (Li et al. 1997), changes of the
state of the receptor are controled by �Ca2�� only.

3 Behavior of the model

In Fig. 1a we show sample recordings of soma voltage
taken from the LP neuron of the stomatogastric
ganglion following the removal of strong synaptic inputs
from other pyloric circuit neurons. These are compared
with segments of a soma voltage time series generated by
the model neuron (Fig. 1b). The main characteristic
common to both sets is variability of burst duration. The
variability seen in experimental recordings is compared
to the model results in Fig. 2. Most burst periods of the
experimental time series are in the range of 1±3 s and for
the model in the range of 1.5±3 s with the most frequent
period of about 1.7 s. The maximum periods reach
about 6 s in the experimental time series and about 5 s in
the model simulations.

In the model neuron, the soma compartment pro-
duces plateau depolarizations that drive the axon com-
partment to generate bursts of spikes. The plateau
potential is maintained by the competition between the
inward currents ICa1 and ICa2 on one side and the out-
ward currents IK�Ca� and Il and the coupling to the axon
compartment on the other side. Among the two Ca2�

Fig. 1. a Experimental time series of the soma membrane
voltage of the lateral pyloric (LP) neuron in four di�erent
preparations. Experimental methods: The stomatogastric
nervous system was removed from adult spiny lobsters,
Panulirus interruptus, and prepared for electrophysiological
recordings (Mulloney and Selverston 1974). Using standard
pharmacological and cell-killing techniques (Miller and
Selverston 1979; Bal et al. 1988), the LP neuron was
isolated from synaptic inputs provided by other neurons of
the pyloric circuit. Descending modulatory input from
anterior ganglia was retained. Under these conditions, LP
typically generated an irregular pattern of slow voltage
oscillations and bursts of spikes. b Calculated time series of
the soma membrane voltage V in the model neuron with
IP3 � 0:29lM (top panel), IP3 � 0:35lM (bottom panel)

Fig. 2. Top Experimentally measured burst periods. Bottom Calcu-
lated burst periods with IP3 � 0:354lM
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currents, ICa1 initiates, while ICa2 helps to sustain the
plateau. The magnitude of IK�Ca� depends on both
voltage and cytosolic �Ca2��. The in¯ux of Ca2� during
the plateau increases this current, leading ®nally to
plateau termination. The voltage then drops to values of
about ÿ45mV. Cytosolic �Ca2+� decreases because the
�Ca2�� currents deactivate and because Ca2� is pumped
out of the cell and into the ER. Thereafter, IK�Ca� de-
creases and the voltage rises slowly until activation of
ICa1 initiates the next voltage plateau. In the course of a
bursting cycle, cytosolic �Ca2�� varies with an amplitude
of 20±40 nM.

During steady state bursting, �Ca2�� in the ER
(lumenal �Ca2��) oscillates with a small amplitude
around an average ®lling state (Fig. 3, bottom). The
average ®lling state has a strong impact on the oscilla-
tions of cytosolic �Ca2��. This can be seen by starting
the simulation at low lumenal �Ca2�� and allowing the
ER to ®ll up. As lumenal �Ca2�� increases, the amplitude
and period of cytosolic �Ca2�� oscillations decrease
(see Fig. 3, top). This allows for a feedback of the ®lling
state of the ER to the membrane oscillations and the
Ca2� ¯ux across the plasma membrane. At very low

lumenal �Ca2��, the model undergoes relaxation oscilla-
tions. Within one period, cytosolic �Ca2�� has a short
peak but is low during the longer part of the oscillation.
Hence, IK�Ca� cannot terminate the voltage plateau
for most of the period. ICa2 stays high providing
large Ca2� ¯ux into the cell. Additionally, �Ca2+�
extrusion by the cell membrane pump and exchanger is
low. The �Ca2+� entering the cell is taken up by the ER
raising the ®lling state. This leads to oscillations with a
more sinusoidal shape and relatively shorter phases of
low cytosolic Ca2� (Fig. 3, bottom). In turn this de-
creases the amount of Ca2� entering the cell within one
oscillation period. The asymptotic state has no average
net ¯ux of Ca2� across the cell membrane within one
oscillation. [This mechanism of communication between
the ER and the cell membrane was described by Li et al.
(1997) for gonadotrophs.] Thus, the ER controls the
character of the oscillations so that it stabilizes its ®lling
state.

The IP3 concentration determines the value of the
®lling state being stabilized and therefore the intrinsic
time scale of the oscillations of the Ca2� system. De-
pending on the value of �IP3�, the model neuron can

Fig. 3. Top Transient behavior of the model starting
from low lumenal Ca2� Cer (C cytosolic Ca2�, V soma
membrane voltage; IP3 � 0:272 lM). The asymptotic
state reached after the transient behavior is shown in
the bottom left ®gure. Bottom Phase relation between
lumenal Ca2� �Cer�, cytosolic Ca2� �C� and the
membrane voltage of the soma V for regular oscilla-
tions (left IP3 � 0:272 lM) and chaotic behavior (right
IP3 � 0:354lM). The phase relation between V and C
is always preserved: C has a minimum at the beginning
of the voltage plateau and a maximum at the end. Cer

oscillates with the same period as C and V . The phase
relation between V and C on one side and Cer on the
other side is lost in the chaotic regime (bottom right).
Cer changes on a time scale of a few bursts. Note that
Cer increases monotonously during the second and
third bursts (bottom right) before it starts to decrease
again
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generate regular oscillations as well as chaotic behavior.
At low �IP3�, regular oscillations occur (Fig. 4, top:
�IP3� � 0:272 lM). Increasing �IP3� causes a transition to
chaotic behavior (Fig. 4, bottom; �IP3� � 0:356 lM).
This transition occurs when the intrinsic time scale of the
Ca2� subsystem approaches the intrinsic time scale of
the voltage oscillations. It is the interaction of the in-
tracellular Ca2� dynamics with membrane voltage dy-

namics that creates chaotic bursting. When uncoupled
from each other, neither subsystem behaves chaotically.
This is evocative of the general case of coupling between
a slow oscillator and a system moving on a limit cycle
close to a homoclinic orbit, which might lead to chaos
(Gaponov-Grekhov 1992; Arnold 1993).

The oscillations of cytosolic �Ca2�� couple the lume-
nal �Ca2�� to the membrane dynamics and vice versa.
During regular bursting, lumenal �Ca2�� and cytosolic
�Ca2�� oscillate with the same period. Cytosolic �Ca2��
reaches its maximum at the end of the burst, lumenal
�Ca2�� following with a certain phase lag (Fig. 3, bottom
left). During chaotic bursting, however, this phase re-
lation is lost and lumenal �Ca2+� oscillates irregularly on
the time scale of several burst periods (Fig. 3, bottom
right). The amplitude of these slow oscillations is larger
than those that occur during regular bursting. These
slow oscillations of lumenal �Ca2+� are essential for
chaotic bursting. If one sets lumenal �Ca2�� to a constant
value, a transition to regular oscillations occurs. Hence,
regular oscillations can occur without lumenal �Ca2��
oscillations but chaos cannot.

Figure 5 shows the range of IP3 concentrations and
injected currents at which chaotic bursting was found.
Chaotic attractors were identi®ed by inspection of a
parametric PoincareÂ section that shows a dense distri-
bution of points for chaotic behavior. This was cor-
roborated for sample time series by calculations of the
Lyapunov exponents (see Sect. 4 below). In Fig. 5a we

Fig. 4. Calculated time series of the soma membrane voltage V with
IP3 � 0:272lM (top) and IP3 � 0:354 lM (bottom)

Fig. 5. a One-parameter PoincareÂ section for increasing
values of �IP3�. The chaotic regime widens as �IP3� is
increased. The inserted ®gure is a blowup of the region of
normal operation. b Values of �IP3� and injected current for
which chaotic behavior was found. The vertical lines show the
parameter scans we performed. Full lines Calculations with
the parameters given in Appendix B. Dash-dotted lines
Results with Ca2� removal parameters: Kpmp � 0:5 lM,
Kpmex � 1:2lM, mpmp � 0:0202lMsÿ1, mpmex � 0:606lMsÿ1.
Additionally the time scale of the activation of ICa2 �mCa2�
was increased by a factor 1.13
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show a one-parameter PoincareÂ section, plotting cyto-
solic �Ca2�� values as a function of �IP3� (Idc � 0�. Cha-
otic oscillations were observed for �IP3� between
0.310 lM and 0.373 lM. This range extended down to
�IP3� � 0:10lM upon injection of negative dc (Fig. 5b,
solid outlines). Conversely, the range was compressed
when we increased the slope dependence of Ca2� ex-
trusion upon cytosolic �Ca2�� (Fig. 5b, dashed lines).
The results obtained with the model neuron di�er from
the experimental observations in the parameter region
where the values of cytosolic �Ca2�� amplitudes are high
(0.7 lM, large �IP3�). There, the period of the simulated
oscillations increases to about 10 s and the voltage
overshoots to �20 mV at the beginning of the bursts.
This behavior was not observed in experiments.

A further test of the model was provided by intro-
ducing dc current into the soma/neuropil compartment,
as in experiments reported in Abarbanel et al. (1996).
We observe the following general scenario (Fig. 6). The
membrane voltage stays at about ÿ45 mV for very
negative injected currents (� ÿ0:09 nA). At large posi-
tive injected currents the model spikes tonically. At
intermediate values, chaotic behavior or regular oscil-
lations are observed. The period of the regular
oscillations decreases with increasing injected current,
accompanied by an increase of the minima of the
membrane voltage V �t� from ÿ45 mV to ÿ30 mV.
These trends resemble experimental observations. The
major di�erence to experimental measurements is
the existence of a regime of regular bursting between the
chaotic regime and the quiescent state in experimental
neurons that was not found in the model. There, the
chaotic behavior extends down to the quiescent state. As
the model neuron was depolarized by positive dc cur-
rent, we could observe period-doubling bifurcations (e.g.
Fig. 6, 0.04 nA).

4 Comparison of voltage time series in model
and experimental data

For quantitative comparison of model and experimental
time series, we used a standard set of nonlinear analysis
algorithms (Abarbanel 1996). The state space of the
system (model cell or biological neuron) can be recon-
structed from measurements of an observed variable
using the method of time delays. This reconstruction
proceeds by forming d-dimensional vectors from mem-
brane voltage data V �t� � V �n� � V �t0 � nss� starting at
some time t0 and sampling it every ss. In both our
experimental observations and in our model calculations
ss � 0:5 ms. These vectors take the form:

y�n� � �V �n�; V �n� T �; V �n� 2T �; . . . ;

V �n� �d ÿ 1�T �� ;
where the integer T is the number of time steps of length
ss between components of the state vector y�n�.

We determine T by asking when the components of
y�n� are independent of one another in a nonlinear
fashion. For this purpose we plot the average mutual
information between measurements as a function of T
and choose the T value for which the information
reaches its ®rst minimum. The theory of state space re-
construction indicates that all properties of the under-
lying system deduced from time delay plots should be
independent of T (Takens 1981). Numerically one does
not ®nd this for very small or very large T , but experi-
ence (Abarbanel 1996) shows the choice of the ®rst
minimum of average mutual information to work quite
well. However, since this is not a rigorous result but
provides an orientation for the choice of T only, the
estimations are performed not only for this choice of T
but also the surrounding values are used to assure the
results. Figure 7 (top) shows the average mutual infor-
mation evaluated from a long time series from a syn-
aptically isolated LP neuron. A ®rst minimum is visible
at T � 11 or 5.5 ms. In Fig. 7 (bottom) we show the
same quantity for the model neuron in its chaotic regime
(�IP3� � 0:354 lM). A ®rst minimum occurs at T � 5.

The dimension of the reconstructed state space dE is
estimated by the method of false nearest neighbors
(Abarbanel 1996). Figure 8 (top) shows that, for the
biological data, the number of false nearest neighbors
declines to zero at dE � 7. In Fig. 8 (bottom), we show
the same quantity for the model output. Here it is pos-
sible to conclude that the percentage of false nearest
neighbours is zero at dE � 6, but for ``safety'' we have
used dE � 7 in subsequent calculations.

Once this global dimension has been determined, we
would like to know what dimension is required locally
by the dynamics. Dissipative dynamical systems possess
an attractor whose dimension is smaller than that of the
whole state space (and typically noninteger). To estimate
this load dimension, dL, we use the method of local false
nearest neighbors, in which we test our ability to predict
the local evolution of the attractor, as a function of di-
mension and the number of neighboring points (Abar-
banel 1996). Figure 9 (top) shows the results of this

Fig. 6. Calculated membrane voltage time series with injected
currents at IP3 � 0:29 lM. The values of the injected currents are
given in the ®gures
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calculation using the experimental data; Figure 9 (bot-
tom) comes from analysis of the model data. In each
case the quality of the prediction becomes independent
of dimension and number of neighbors at dL � 3.

Thus, both the observed and the model data can be
described by three dynamical variables. This is a re-

markable property of either data set, and more so as
they agree. In the biological neuron there are many ion
channels and intracellular dynamical processes operat-
ing. Similarly, the model neuron involves many mem-
brane currents as well as critical Ca2� dynamics (see
Appendix B). Yet, in both, only three dynamical vari-
ables determine the time course of membrane potential.
The analysis does not tell us which those three are, but it
does serve as a guide for our search.

Finally, we evaluate the spectrum of dL � 3 Lyapu-
nov exponents. These quantities determine the stability
of neural oscillations. Since we are dealing with dissi-
pative systems that can be described by sets of di�er-
ential equations, we expect one exponent to be zero and
their sum to be negative. The presence of a positive ex-
ponent indicates that a system is chaotic. Details on
calculating the Lyapunov exponent spectrum are de-
scribed elsewhere (Abarbanel 1996). Figure 10 (top)
shows the exponents for the experimental data. We
see one positive exponent �k1 � 0:4�, one exponent
near zero �k2 � 0:07�, and one negative exponent
�k3 � ÿ0:57�; the sum of the exponents is negative. The
so-called Lyapunov dimension, DL, is an estimate of the
fractional dimension of the system attractor: here
DL � 2:8. For the model data (Fig. 10, bottom), we
found k1 � 0:12, k2 � ÿ0:0062, and k3 � ÿ0:20 for a
DL � 2:6. This is an excellent agreement between the
experimental data and the model. It is possible that
another value for �IP3� might yield still closer agreement
between Lyapunov exponents. Although we have not
explored the full range of dynamical behaviors, our
results indicate that the model captures the overall
dynamical aspects of the observed data.

Fig. 8. Global false nearest neighbors for the LP neuron. Top
Evaluated from experimental data. Bottom Evaluated from the model
with IP3 � 0:354lM

Fig. 9. Local false nearest neighbors for the LP neuron including 40,
60, 80, and 100 neighbors in the calculation. Top Evaluated from
experimental data. Bottom Evaluated from the model with
IP3 � 0:354lM

Fig. 7. Average mutual information for the LP neuron. Top
Evaluated from experimental data. Bottom Evaluated from the model
with IP3 � 0:354lM
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Finally, since the dimension is low, we can exhibit the
shape of the reconstructed attractors. Figure 11 shows
the similar topology of attractors reconstructed in three-
dimensional state space (using membrane voltage V �t�
and its time delays y�t� � �V �t�; V �t ÿ T �; V �t ÿ 2T ��� for
the case of the experimental recording and the model
data.

5 Discussion

In this article we have shown that intracellular Ca2�

dynamics, regulated by �IP3�, add critical degrees of
freedom to a mathematical model of an STG neuron,
thereby allowing it to generate irregular bursts that are
similar to those observed experimentally. We also
analyzed the experimentally observable dynamical vari-
able, namely membrane voltage, using nonlinear tools.
Qualitatively and quantitatively, the dynamical charac-
teristics of the model are in close agreement with those
observed in earlier experiments.

The model's low-dimensional behavior suggests that
we might reduce its 12 dynamical variables to some set
of 3 or 4 alone. In fact, our earlier analyses of experi-
mental data led us to use the 3-dimensional model of
Hindmarsh and Rose (1984). However, that model lacks
clear connections to biological mechanisms and behaves
chaotically in only a narrow region of parameter space.

The model presented here su�ers from neither draw-
back. Despite the model's large number of parameters,

its dynamical behavior and its similarities to experi-
mental data suggest the importance of its main feature ±
namely, a feedback interaction between relatively fast
membrane voltage dynamics and a slower intracellular
process.

Our work builds on the conductance-based models of
STG neurons presented by Buchholtz et al. (1992) and
Turrigiano et al. (1995). These models incorporated
simple Ca2� dynamics consisting of in¯ux via ionic
currents and a removal process proportional to the in-
tracellular Ca2� concentration. Chaotic bursting-spiking
oscillations were reported in neither case. Chay (1996)
argued that the Ca2� store of the endoplasmic reticulum
could be important in regulating bursting behavior,
showing that such dynamics allowed chaotic bursting to
occur in models of pancreatic b-cells. We have applied
this idea to simulations of STG neurons.

In the model described here, membrane Ca2� and
Ca2�-dependent K� currents directly couple the cyto-

Fig. 10. The spectrum of Lyapunov exponents for the LP neuron.
Each was evaluated in dE � 7 and dL � 3 as suggested by the previous
results. Top Evaluated from experimental data. Bottom Evaluated
from the model with IP3 � 0:354 lM

Fig. 11. The attractor displayed in three dimensions using recon-
structed state space y�n� � �V �t�; V �t ÿ T �; V �t ÿ 2T �� with V �t� the
LP membrane voltage and T determined from average mutual
information. Top Evaluated from experimental data. Bottom Evalu-
ated from the model with IP3 � 0:354lM
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solic �Ca2+� to the membrane voltage. The phase rela-
tion between both variables is always preserved in the
sense that cytosolic �Ca2�� always begins to increase
when the membrane voltage jumps to the plateau level
and reaches a local maximum at the end of the plateau.
A similar phase relation has been measured directly in
pyloric neurons of the crab STG (Ross et al. 1989).

There is no direct coupling between lumenal �Ca2��
and membrane voltage. This may be the reason why
there is no constant phase relation between these vari-
ables in the chaotic regime. The aperiodic modulation of
cytosolic Ca2� dynamics by lumenal �Ca2�� leads to ir-
regular behavior. The loss of phase relationship is
probably linked to the small-amplitude character of the
Ca2� oscillations. With large-amplitude (a few hundred
nM) oscillations, intracellular Ca2� moves on its in-
trinsic attractor with a ®xed phase di�erence between
lumenal and cytosolic �Ca2��, and the burst pattern is
regular. We do not know whether large amplitude Ca2�

oscillations can occur in the LP neuron. The amplitude
of oscillations is obviously in¯uenced not only by the
ER, but also by the Ca2�-bu�ering capacity of the cy-
tosol and the sequestration of Ca2� by mitochondria.

We have not attempted a detailed study of the mod-
el's transition from regular to chaotic bursting. The bi-
furcations appear similar to those proposed by Terman
(1992). A homoclinic orbit may be present in the calcium
subsystem, but this was not investigated.

Our goal was to identify a plausible source of chaotic
dynamics that could be sought by experiment. The model
remains speculative to the extent that there are, at pre-
sent, no data concerning IP3 receptors in STG neurons.
However, Zhang et al. (1995) found that ca�eine-relea-
sable, intracellular Ca2� stores could in¯uence Ca2�-de-
pendent membrane currents in an STG neuron of the
crab. In the model, the dominant nonlinear e�ect enters
via Ca2�-induced Ca2� release and could therefore also
result from the activity of ryanodine receptors. Empirical
support for the mechanisms proposed here must come
from measurements of intracellular �Ca2�� and manipu-
lation of Ca2� metabolism during chaotic bursting.
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Appendix A: Glossary

ER endoplasmic reticulum
IP3 inositol 1,4,5-trisphosphate
IP3R IP3 receptor channel of the ER
C cytosolic Ca2� concentration
Cer Ca2� concentration in the ER
h inactivation of the IP3R by C
h`�C� equilibrium value of h

a`�C� activation of the IP3R by C
b`�IP3� activation of the IP3R by IP3

d`�Cer� inactivation of the IP3R by Cer

jfil Ca2� uptake of the ER
jrel Ca2�release of the ER
jout Ca2� ¯ux across the cell membrane
ha threshold of the activation of the IP3R

by C
hb threshold of the activation of the IP3R

by IP3

hd threshold of the inactivation of the IP3R
by Cer

hh threshold of the inactivation of the IP3R
by C

ka�IP3;Cer� steepness of the dependence of a1 on C
ka scale factor for ka�IP3;Cer�
kh�IP3;Cer� steepness of the dependence of h1 on C
kh scale factor for kh�IP3;Cer�
kb�IP3;Cer� steepness of the dependence of b1 on

�IP3�
kd�IP3;Cer� steepness of the dependence of d1 on Cer

sh�C� time constant of h dynamics
sh; ht; kt parameters of sh�C�
r ratio of the e�ective volume of the ER to

the e�ective volume of the cell:
Verfcyt
Vcellfer

Vcell cell volume
Ver volume of the ER
fcyt bu�ering coe�cient of the cytosol
fer bu�ering coe�cient of the ER
Verp;Kerp maximal pumping rate and half maxi-

mum value of Ca2� ATPases of the ER
Pleak leak Ca2� ¯ux out of the ER
PIP3

maximum Ca2� ¯ux out of the ER in-
duced by IP3 and Ca2�

mpmp;Kpmp maximal pumping rate and half maxi-
mum value of Ca2� ATPases in the cell
membrane

mpmex;Kpmex maximal pumping rate and half maxi-
mum value of Ca2�=Na� exchanger in
the cell membrane

V soma membrane voltage
V1 axon membrane voltage
cm soma membrane capacitance
cm1 axon membrane capacitance
ICa1 small maximum conductance Ca2� cur-

rent
ICa2 large maximum conductance Ca2� cur-

rent
Ih low threshold current
IK�Ca� Ca2�-dependent K� current
INa fast Na� current
IKd delayed recti®er K� current
Il leak current of the soma
Il1 leak current of the axon
IV ;V 1 current of ohmic coupling of V and V1

ri recti®cation of Ii; i is Ca1, Ca2, h,
K(Ca), Na, Kd, l, l1 or V ; V 1

gi maximum conductance of Ii; i is Ca1,
Ca2, h, K(Ca), Na, Kd, 1, 11, or V, V1

mi activation variable of Ii; i is Ca1, Ca2, h,
K(Ca), Na, or Kd
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hi inactivation variable of Ii; i is Ca1 or
Na

ei;m equilibrium value mi
ei;h equilibrium value hi
si;m time constant of mi dynamics
si;h time constant of hi dynamics
qi;m exponent of the dependence of Ii on mi
qi;h exponent of the dependence of Ii on

hi
KK�Ca� half maximum value of the C depen-

dence of eK�Ca�;m
f coe�cient for the shift of the threshold

of eK�Ca�;m by C
F Faraday's constant

a � fcyt

2FVcell

Appendix B: The model

B.1 Ca2� dynamics

_C � jrel ÿ jfil ÿ jout (A1)

_Cer � ÿ jrel ÿ jfil� �=r (A2)

_h � h` ÿ h
sh

(A3)

jfil � Verp
C2

C2 � K2
erp

(A4)

jrel � Pleak � PIP3
a`b`d`h� ��Cer ÿ C� (A5)

jout � mpmp
C2

C2 � K2
pmp

� mpmex
C4

C4 � K4
pmex

� a�ICa1 � ICa2�

�A6�

C�x; y; z� � 1

1� e
xÿy

z
(A7)

a` � C ha;C; ka� � (A8)

b` � C hb; IP3; kb� � (A9)

d` � 0:2 1� 4C�Cer; hd; kd�� � (A10)

h` � C�C; hh; kh� (A11)

ka � �ka 0:8� IP3

IP3 � 0:2

0:152

0:152 � �IP3 ÿ 0:4�2
 !

60

60� Cer

�A12�

kh � �kh 0:05� IP2
3

IP2
3 � 1� 180

Cer

 !
(A13)

sh � �sh
b1d1cosh Cÿht

kt

(A14)

B.2 Voltage dynamics

_V � ÿICa1 ÿ ICa2 ÿ Il ÿ IK�Ca� ÿ Ih ÿ IV ;V1

ÿ �
=cm �A15�

_V1 � ÿINa ÿ Il1 ÿ IKd � IV ;V1

ÿ �
=cm1 �A16�

Ii � gim
qi;m
i h

qi;h
i ri�V � �A17�

_ni � ei;n ÿ ni
ÿ �

=si;n; �n � m; h� �A18�

B.3 Parameters

The voltage values are in mV, the gi in lS. C�x; y; z� is
de®ned in Equation (A7).

Ii n ei;n qi;n si;n gi ri�V �
ICa1 m C�ÿV ; 33:1; 13:18� 3 60ÿ 40C�ÿV ; 53:1; 20:5� 0.172 ÿV

exp2FV
RTÿ1:0h C�V ;ÿ23:1; 5:5� 1 150

ICa2 m C�ÿV ;ÿ6:9; 17� 3 37:14ÿ 25:86C�ÿV ; 10:1; 26:4� 3.75 ÿV
exp2FV

RTÿ1:0
IK�Ca� m C�V ; 2:5ÿ f �C ÿ 0:5�;ÿ13�x 1 5/3 0.06 �V � 80�x

C�V ;ÿ30:5ÿ f �C ÿ 0:5�;ÿ3:5� C4

C4�K4
K�Ca�

Ih m C�ÿV ;ÿ43:3; 6:5� 1 272� 1499C�ÿV ; 27:2; 8:73� 0.024 V � 20
Il 0.0024 V � 65
IV ;V1

0.072 V ÿ V1

Il1 0.024 V1 � 65
INa m C�ÿV1; 4:5; 5:29� 3 constant: mNa � mNa1 80 V1 ÿ 50

h C�V1;ÿ28:9; 5:18� 1 0:67�1:5� C�V1;ÿ14:9; 3:6��x
C�ÿV1; 42:9; 10�

IKd m C�ÿV1;ÿ7:7; 11:8� 4 7:2ÿ 6:4C�ÿV1; 8:3; 19:2� 13 V1 � 80
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r � 0:6, Vcell � 2:671 nl, fcyt � 0:01, ha � 0:4 lM,
hb � 0:6 lM, hd � 20 lM, hh � 0:36lM, ht � 0:35 lM,
kb � 0:2 lM, kd � 10 lM, kt � 0:18 lM, �ka � 0:14 lM,
�kh � 0:46 lM, KK�Ca� � 0:5 lM, Kerp � 0:2 lM, Kpmp �
0:1 lM, Kpmex � 0:9 lM, mpmp � 0:0145 lMsÿ1, mpmex �
0:145 lMsÿ1, Pleak � 0:0286 sÿ1, PIP3

� 3:571 sÿ1, Verp

� 3:762 lMsÿ1, �sh � 1:25 s, a � 0:0194 lM �nAs�ÿ1,
cm � 0:5 nF, cm1 � 0:33 nF, f � 2V lMÿ1, F/
RT = 0.04095 mVÿ1, T � 283K.

We have adopted the basic structure of IK�Ca� from
Buchholtz et al. (1992). We dropped the inhibition of
IK�Ca� by high �Ca2��, because �Ca2�� remains small
�� 0:5 lM� in our simulations. The Hill coe�cient for
the Ca2+ dependence was set to 4 in order to make IK�Ca�
sensitive to smaller amplitudes of Ca2�. The parameters
of the voltage dependence were ®t in order to balance
ICa2 at the plateau level, to avoid an overshooting of the
voltage when ICa1 is activated, and to assure a decrease
of IK�Ca� with decreasing voltage low enough to allow
ICa1 to activate at trough voltage levels.

We have chosen a recti®cation according to the
Goldman-Hodgkin-Katz theory for the Ca2� currents,
as recommended by Hille (1992). As a consequence, we
adapted the voltage parameters of the steady state values
of the activation and inactivation variables of ICa1
and ICa2 to reach steady state I-V dependencies typical
for low voltage activated (LVA) and high voltage
activated (HVA) Ca2+ currents (see Hille 1992, Chap. 4;
Turrigiano et al. 1995).

Parameters such as cell volume and temperature were
adapted from published values. The Ca2� concentration
in the somatic compartment is assumed to be spatially
homogeneous.
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