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INTRODUCTION

Setting the stage

A BY now classical example of a correlation between gross
hippocampal electrical activity and different types of
behavior (113) about a quarter century ago started a small
industry to relate single-unit firing patterns in the limbic
system to the oscillatory and irregular EEG states of the
hippocampus (11). Undoubtedly this was inspired by the
hope that a more precise correlation between single-unit
activity and behavior could be found than that between the
few distinguishable types of gross brain activity and a larger
variety of behavioral states. Such a precise correlation could
elucidate the nature of a neural code. The question that I
wish to address in this paper is: does such a neural code exist
in reality, or only in the minds of neuroscientists?

Perkel and Bullock (85) asked around the same time: ‘‘Is
the code of the brain about to be broken?’’ They sub-
sequently listed a large number of potential neural codes
that ‘‘made sense’’ to the neuroscientist of that time. As we
will see, ‘‘making sense’’ or ‘‘having meaning’’ is crucial to
the notion of a code; it indicates that coding occurs in
context. The meaning aspect should, however, be con-
sidered strictly in the context of the subject’s behavior.
This behavior will select those aspects of neural firing that
make sense for the animal’s behavior and thus to the brain
which determines, and is affected by, the behavior. The
information encoded in a train of neural action potentials is
interpreted by higher order neurons and it is also interpreted
by the neuroscientist who designed and performed the
experiments. There need not be any correspondence

between these two interpretations. The biological interpre-
tation (by other neurons) is the result of evolutionary
adaptations; whatever resulted in enhanced survival was
conserved. The interpretation by the neuroscientist, how-
ever, may be influenced by the ruling paradigm in the
particular field of research.

Information processor or representational system?

Thinking in terms of neural coding and decoding, one
implicitly considers the brain as an information processing
system. The brain is also often supposed to be endowed with
a ‘‘world’’ representation; as a consequencerecognition(a
match with that internal representation) andnovelty (no
match) are relevant issues. This adds a semantic aspect to
information processing. So it is conceivable that a stimulus
contains a lot of information in some theoretical sense
because of its improbability (98) and is nevertheless easily
recognized. In that case both the information content and
behavioral meaning of the stimulus, its recognition, is high.
It is also conceivable that a rare stimulus is not recognized,
is completely new. In that case the information content will
remain high, but the behavioral meaning may be low. Which
of these two conditions produces the most relevant informa-
tion for the brain or the subject, is often left out of
discussions about neural coding. Is information derived
from sensory stimulation used to continuously update the
brain’s internal representation of the ‘‘world’’ (e.g., hippo-
campal place cells (43); head direction cells in limbic
system (120))? If that is the case then neural codes may
change with time through learning, i.e., the same spike
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sequence may be interpreted differently (or evoke a
different behavior) later in the day.

Coding and meaning

Preselecting stimuli from an ethologically relevant set
which may have an ‘‘innate’’ neural representation
(106,107) will optimize the probability of recognition by
the subject. However, at the level of the individual neuron,
stimuli outside the ethologically relevant set (such as clicks
or tone pips in the auditory domain, and spatial gratings or
Walsh patterns in the visual domain) are often equally likely
to produce strong responses. Can these so called simple
stimuli be used at all to infer potential neural codes? If
individual neurons can be considered as simple filters, they
may extract identical information (i.e., produce the same
response) from an ethologically meaningless sound and
from a biologically relevant sound. Extracting ethologically
relevant features may thus require very specialized cells or
populations of neurons that combine the individual features.

Bursting as a code?

Information about some stimulus attribute may be con-
tained in mean firing rates, stimulus-modulated firing rates,
synchronized firing rates and/or very precise timing differ-
ences between the firings of two (or more) neurons. But also
the duration of a burst of impulses, the number of spikes
within a burst, the rhythm of firing or the existence of tem-
poral patterns in a small time window may be used. As early
as 1964, Burns and Pritchard suggested that bursting with-
out a change in long-term firing rate could be a code used for
edge detection in certain cells in visual cortex (15). Around
the same time (96), it was found that ganglion cells in
Aplysiawere sensitive to the patterning of spikes within a
burst; in other words, burst patterns may function as ‘‘pass-
words’’. Cattaneo et al. (21) found that burst spikes played a
very important role in carrying visual information. Indeed,
only these spikes were tuned for spatial frequency, orienta-
tion and velocity of the grating, while both the rate of
isolated and burst spikes varied as a function of stimulus
contrast. The selectivity of complex cortical cells for spatial
frequency, orientation and velocity was much greater when
the burst component of the discharge was considered in
isolation from the overall discharge. The existence of two
carriers for the transmission of visual information may be
advantageous: cells receiving the messages from the com-
plex cells can potentially distinguish whether the sender of
information is active only spontaneously (only isolated
spikes) or when it is visually stimulated (and fires spikes
in bursts). Burst-spikes of single units in primary auditory
cortex are, on average, far better tuned to tone frequency
than the isolated spikes of the same units (41). Does this
mean that ‘‘bursts’’ are a code or that, specifically asyn-
chronous, burst-firing represents a more sharply tuned
‘‘brain state’’ than does the isolated spike firing?

How many codes?

Is only one type of coding used by the nervous system? In
other words, is there a unique neural code? Or is the state-
ment ‘‘anything goes’’ a better characteristic for a neural
code: whatever works for the nervous system would be a

potential code. It could also be that different stimulus attri-
butes are represented by different codes. Stimulus attributes
can be distinguished into qualitative and quantitative ones.
The qualitative ones relate to topographically mapped ones,
such as place in the visual field or frequency of a sound; the
quantitative ones relate to, e.g., the intensity of the stimulus.
In addition there are the stimulus attributes arrived at by
computational processes; among those are spatial position
of a sound and depth of a visual scene (65). The output of
those processes at the level of the brainstem or midbrain
may again be coded entirely differently than those for the
ones that result from topographical mappings.

Rate or synchrony coding?

Very often, combining timing and firing rate information
may be relevant for the optimal representation of a stimulus
(118). Synchronization codes (population timing codes)
potentially make sense when high spontaneous firing is
present, since they circumvent the problem of saturation
of firing rates at higher stimulus intensities. Rate coding
may be sufficient in the absence of spontaneous firing or low
spontaneous firing rates. For instance, the threshold of
activation of auditory nerve fibers may be defined in terms
of a percentage increase in firing rate or in terms of a given
change in the synchronization of the firings with the
stimulus waveform (58). The latter definition may result
in thresholds that are up to 20 dB lower than for firing rate;
however, behavioral thresholds compare much better with a
firing rate criterion. This exemplifies that subjects and
experimenters may use different criteria. However, of two
potential candidate codes, the one that carries the bio-
logically relevant information more efficiently is, at least
from an information-theoretic point of view, likely the one
used by the nervous system. It is, of course, equally likely
that potential codes are used in combination.

Single unit or ensemble coding?

Is coding done by individual neurons (or small local
groups) or is it a distributed process involving large parts
of the nervous system (7)? What reads the code, i.e.,
decodes the message? Is the reader a distributed system or
is it a ‘‘cardinal cell’’? Is there a local decoder in an
information theoretical sense or is there an integral
sensori-motor system that is genetically set up to react
appropriately, that is plastic and endowed with the benefits
from learning to respond adequately in any situation? The
plasticity may affect either the sensory part or the more
central parts of the system or both. These sensori-motor
coordination systems are feedback systems so there is no
unidirectional flow of information as in classical informa-
tion transmission systems, and this makes a formal treat-
ment difficult.

Signal and noise

Coding of signals in communication systems is often
done to reduce the effects of noise on signal transmission.
The all-or-none action potential in itself is one way in which
the effects of noise are reduced, but the effects of synaptic
noise on the generation of a single spike can still be
profound. Does a neural code exist that has such noise
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immunity? Could neural synchrony serve as part of such a
code? Could bursts or coincident firings act to enhance the
signal-to-noise ratio or figure-ground distinction in the
nervous system (5,44,86)? Are bursts facilitating trans-
mission to other cells (41,110) and, because of the strong
divergence of cortical neural connections, induce synchro-
nized firing in the receiving group of cells? Bursts, by virtue
of their all-or-none character may convert the average,
stationary, sigmoidal neural response function into a short-
term, non-stationary, binary response function like that of a
McCulloch–Pitts neuron.

In the following I will discuss some of these questions.
Because coding is generally defined with respect to the
neural correlates of stationary behavioral or brain states,
and because I will argue that it is the transitions between
brain and behavioral states that are relevant, there need not
be a neural code in the classical sense. As yet, neural corre-
lates of the non-stationary transitions between these brain
states are not well defined.

CODING AND INFORMATION

The genetic code

In the life sciences the concept of code has received the
strongest endorsement by its success in genetics. All genetic
information that can be inherited is coded in a hierarchical
fashion by means of nucleic acid (DNA and RNA) bases
which are translated into amino acids which, in turn, build
proteins. The four nucleic acid bases combine in strings of
three (codons) to code for the 20 different amino acids found
in nature. Most amino acids are therefore coded by more
than one codon (redundancy); in addition, three codons are
used to indicate a ‘‘stop’’ or ‘‘end-of-chain’’ sign. So there
are four letters and 64 three-letter words, of which only 21
are functionally different (including the ‘‘stop’’ sign). The
20 different amino-acid ‘‘words’’ build sentences
(sequences) of say 100 words long, as in the formation of
proteins. This can be done in any of 20100 combinations,
which allows a very large number of things to be repre-
sented (24). Because the survival of genes was determined
by the environment, natural selection has ruled the vast
majority of these combinations as not viable. This empha-
sizes that context determines what codes are meaningful at
present.

Information

Three aspects of information can be distinguished: its
syntactic, semantic and pragmatic ones (70). Again, it is
stressed that information as such has no absolute meaning; it
exists only in a certain context, i.e., between two semantic
levels. The syntactic dimension of information covers the
relation of ‘‘characters’’ to each other. It is the centerpiece
of ‘‘classical’’ information theory, as put forward by
Shannon (98,99). The semantic aspect of information,
expressed in the ‘‘meaning’’ of a message (context wherein
it happens), is largely absent in Shannon’s information
theory: the set of possible symbols is a priori defined and
the ‘‘state’’ of the recipient is not supposed to change.

Shannon’s information theory shows that one can
measure the quantity of information in a message by the
smallest number of symbols required to formulate the

message. The information content of a messagexk with
prior probabilitypk ¼ p(xk) is

I (pk) ¼ ¹ ld(pk), (1)

whereld stands for the logarithm with base 2.
This quantification of information assumes some prior

knowledge on the part of the recipient. This knowledge is
characterized by the probability distributionP of all pk. That
means that the receiver knows in the statistical sense the
composition of the character set to be used. As a conse-
quence, Shannon’s information theory provides no informa-
tion in an absolute sense, but it is fixed once that
composition is defined.

The expectationH of a single message out of a set ofN
with summed probability equal to one is:

H ¼
∑

pkI (pk) ¼ ¹
∑

pk ld(pk): (2)

H becomes zero when one of the probabilitiespk ¼ 1, and
consequently its logarithm is zero.H obtains its maximum
value when all probabilitiespk are equal, i.e., when there is
no prior knowledge of the likelihood of a particular
message.

Given a prior probability distribution of messagesP and a
posterior probability distribution, after encoding,Q, the gain
in information is defined as

H(QjP) ¼
∑

qk[I (pk) ¹ I (qk)] ¼
∑

qk ld(qk=pk): (3)

One characteristic of Shannon information theory is that it
always refers to an ensemble of possible events and ana-
lyzes the uncertainty with which the occurrence of these
events is associated.

One and the same sequence of symbols contains an
amount of information that may vary according to the
semantic level with respect to which this information is
defined. The quantitypk therefore expresses the prior
semantic knowledge of the recipient: the more improbable
its arrival, the greater the information content of an event. In
the context of our analysis we may ask: how far does neural
information exist independently of the observing neuro-
scientist? Or at what semantic level does neural information
begin to operate?

The pragmatic aspect of information reveals itself when-
ever a message or an event, in the widest sense, alters the
state of the recipient. Two essential and complementary
components of the pragmatic aspect of information are
novelty and recognition or confirmation. The element of
surprise, or novelty, of the particular event is quantified in
a meaningful way by the Shannon information measureI k.
Meaningful messages confirm the understanding by the reci-
pient, or else they may confirm or establish semantic struc-
tures in the recipient. The concept of confirmation is related
to the communications-theoretical idea of redundancy and
to experience and recognition.

In Shannon’s information theory, novelty implies a great
deal of information. However, the pragmatic content of
completely novel information is practically zero, since no
recipient can make sense of it. When only confirmation
occurs, there is no information transmitted at all in the
sense of Shannon. But without confirmatory information
there can be no comprehension or recognition. This points
to a major problem in the straightforward application of
Shannon’s information theory to the behavior of living
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systems and, consequently, to the action of their neural
systems.

CODING IN THE BRAIN

The neural code

The neural code can be loosely defined as the way infor-
mation (in the syntactic, semantic and pragmatic sense) is
represented in the activity of neurons. The fundamental unit
of information and signaling in the nervous system that we
will consider is the action potential. Because action poten-
tial amplitude is reasonably constant, all information is
supposedly carried by action potential number and timing.
It is possible to consider coding at the level of the molecular
structures, such as synaptic receptors (10), or at the level of
the resulting analog signals, such as membrane potentials
(85). However, I will entertain the more restrictive inter-
pretation of coding by the resulting action potential trains,
because membrane potentials are part of a generalized
electrochemical coding strategy that comprises electrical
impulse activity of different rates and patterns that release
specific transmitter combinations from particular neurons
(10). The result of these electrochemical and chemo-
electrical transformations has to be passed on by spike
trains. What information cannot be carried by those spike
trains is lost.

The existence of a code assumes neural elements that do
theencodingand other neural elements that do thedecoding.
The encoding is performed by the sensory receptor/sensory
afferent combination and is specified completely by the
probability of a particular single-unit spike train or set of
multi-unit spike trains (zi) in as many sensory afferents,
conditional on the ensemble of stimuli (xk , X) presented.
Both xk and zi are functions of time. The summed
conditional probability across all spike trains in the
simultaneous recording and all stimuli in the ensemble is
given by:

Pe ¼
∑

pik(zi jxk), (4)

with
∑

p(xk) ¼ 1. If the state of the system is invariant and
synchrony between the activities of the spike trains is not an
issue, the set of spike trains may also be obtained in sequen-
tial recordings. This in a sense constitutes a test for the
presence of invariance and the absence of a role for neural
synchrony: simultaneous and sequential recordings will, in
that case, give the same summed probability.

The decoding problem is completely specified by the
probability of a particular stimulus waveform (x , X) con-
ditional on the spike train of a single neuron or group of
neurons:

Pd ¼
∑

pi(xjzi): (5)

The signal time function,x(t), that maximizes this condi-
tional probability function is a likely stimulus. This proce-
dure implies a maximum likelihood estimation of the
sensory stimulus that could have induced the observed
neural activity pattern. In other words, spike train decoding
is a method for generating an optimal (characteristic) stimu-
lus for the neuron that produces, on average, that particular
spike train. This is the best possible estimate of the stimulus

as it presents itself to the sensory neuron after preprocessing
(filtering) by, e.g., cochlear hair cells or retinal elements.
This ‘‘kernel’’ estimation can be done by reverse correla-
tion, a generalized spike-triggered averaging procedure,
both linear and for higher orders (9,38,108). ‘‘The internal
neural map of the external sensory environment can (thus)
be most clearly understood through an inverse mapping of
the physiological signal flow in the nervous system’’. For
example, ‘‘the sensory interpretation of the activity pattern
of a population of independent low-frequency auditory
neurons in a Gaussian auditory environment is equal to
the sum of characteristic stimuli of active neurons con-
voluted with the autocorrelation matrix of the stimulus
ensemble’’ (60). The combination of non-linearities in
spike generation and the filter characteristics of the synapse
results for many neural networks in an essentially linear
transmission of analog signals from presynaptic cell bodies
to postsynaptic dendrites. Therefore, the dramatic all-or-
none non-linearities of spike generation may not be as
important as the graded analog dynamic properties of
nonspiking regions of the cell (9).

The problem of reading a neural code in this view is, thus,
essentially the problem of building an inverse filter that
operates on the spike train(s) to produce a real-time estimate
of the unknown stimulus waveform (50). Stimulus recon-
struction is not necessarily what the animal is trying to do;
however, it is of the same nature as the problems that the
animal must solve, such as stimulus recognition and classi-
fication in relation to their survival value (1).

The brain as a representational system

Is it the role of the nervous system to evaluate the signals
from the senses (coding) by transforming that information
into a command signal (decoding) for the effector system
(muscles or glands)? Alternatively, is it the role of the
nervous system to periodically check the validity of its
internal representation (world model) with the outside
world and to affect its muscles to adjust the world view to
the internal model or to update its neural connections to
adjust this internal representation to the external world? It
is likely that both roles are important because of require-
ments posed by behavioral adaptation.

The first role can be equated with the information proces-
sing model of the brain and will be discussed further in the
next section. The second role corresponds with a represen-
tational model of the brain. Representational models rely
almost exclusively on the pragmatic aspects of information,
whereas the information processing models tend to be more
heavily weighted toward the syntactic aspects. Both models
require the incorporation of the semantic aspects of infor-
mation and they may thus represent the endpoints of a con-
tinuous ‘‘model’’ scale. Representational models are
inherently plastic, because of the continuous updating of
the internal ‘‘world’’ model; the information processing
models, on the other hand, require rather fixed or only
slowly changing decoders to function properly. One could
state that representational models change their parameters
on a time scale slower than the time it takes for information
processing. It is then probably not too much of a leap to
suggest that information processing models can be
embedded within representational models. This can be for-
malized in models similar to those for associative memory
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(68) and can be summarized in two equations:

yh(t) ¼ xh(t) þ
∑

whkyk(t), (6)

ẇhk ¼ ayh(t)[yk(t) ¹ ykb], (7)

wherexh(t) is the input firing rate provided by neurons out-
side the modifiable network to cellh, yh(t) is the output
firing rate of cell h. The whk are the coupling strengths
between cellsh andk from within the neural network,ykb

is the spontaneous firing rate of cellk anda determines the
degree of learning (determines the rate of change of the
synaptic strength,̇whk(t). This learning rate is slow com-
pared to the interaction between the neurons. Eqn (6) is
known as the neural interaction equation (61), i.e., the
information transmission part of the brain model. Eqn (7)
describes the way the synaptic couplings between cells
change with time. An early version of these equations (17)
was published by Caianiello, who called them respectively
the neuronic and mnemonic equations. There is one view
that takes exception to this ‘‘adiabatic learning’’ hypothesis
which requires the synaptic connections to change slowly.
This was expressed (74) by von der Malsburg in a ‘‘correla-
tion theory of brain function’’ that required fast modifi-
ability of synapses on a time scale of a fraction of a second,
in addition to the slow changes in synaptic strength as
expressed in Caianiello and Kohonen’s models. The learn-
ing part of the model was again in the slow, structural,
changes in connection strengths, but the required fast
modifiability of the synapses eliminates the existence of
decoders with even semi-constant properties.

A subject has some expectancy about the probability of
various environmental occurrences stored in its internal
representation (70), and incoming sensory information is
continuously checked as to whether it corresponds, within
certain error, to this internal representation; the setwhk of
neural connectivities. This requires re-entrant, creative,
systems (28,61) with a definite role for thalamo-cortical
(78) and cortico-cortical loops (79). In fact, Mumford
proposed (78) that the thalamus acts like ‘‘an elaborate
7th layer of the cortex’’ and functions as a ‘‘blackboard’’ on
which the cortex writes and from which it reads. This could
be the place where the internal representation of the world is
stored and continuously updated.

Are sensory stimuli just igniting pre-existing assemblies
that contain world representations (2)? Are synchronized
nerve cell membrane oscillations the mechanisms that bind
various stimulus features into a coherent whole (52) or are
they merely the ticks of a clock that determine the time
points for enhanced synchrony or correlation to be used in
information processing (12,56)? Oscillations occurring syn-
chronously in vast areas of the brain, such as theta oscilla-
tions in the limbic system, likely are not used in information
processing per se, but in resetting the activity in particular
neural populations. For instance, rhythmic theta bursting in
the hippocampus generally co-occurs with a desynchro-
nized, or actually a fast synchronized (105) EEG in neo-
cortex and vice versa. What, if any, is the role of the
reticular thalamic and the parabrachialis nuclei in control-
ling (switching between) the various response modes of the
thalamocortical cells (101)? Is locality of oscillations
related to their coding capacity: slow wave oscillations
(, 1 Hz) are synchronous over the entire cortex (and typi-
cally occur when the cortex shuts down, sleep), the alpha

range shows more restricted synchrony (representative of
area shutdown), whereas gamma band activity appears to be
spatially very restricted but may be synchronous in patches
that are far apart (104).

The brain as an information processor

‘‘If we choose to view the brain in informational terms,
i.e., as an adaptive signaling system embedded within the
external environment, then the issue of which aspects of
neural activity constitute the ‘‘signals’’ in the system is
absolutely critical to understanding its functioning’’ (19).
Information theory provides a framework for adding up the
many different discrimination abilities relevant to real-
world signals. The theory also allows comparison of differ-
ent stimulus dimensions with respect to their discrimin-
ability. Of course, behavioral experiments would be more
definitive in assessing this discriminability.

What aspect of neural firing carries the information? Is it
mean rate (26,95) which requires integrators with relatively
long integration times, short-term modulated rate
(31,97,121), precise temporal codes that require coinci-
dence detection (2,103), patterns (25,96) or bursts
(5,13,15,21,38,41,101), spatial distribution of active
(mostly defined in terms of firing rate) neurons (48,87) or
the mass action of all membrane potentials (45)?

Does an individual spike or a pattern of spikes point to
something in the external world (9,60)? Such labeled-line
codes signal which features are present in the stimulus.
These codes are also called spatial or topographic codes; the
neurons that are active signal what stimulus modality or
stimulus quality is present. The amount of activity (usually
firing rate) of the neurons presents a weighting of the
relative importance of the stimulus features to which they
respond.

Do individual action potentials carry information or do
they do so only in combination? Combinations of action
potentials form serial patterns in individual units (e.g.,
patterns or bursts) or parallel patterns across units. In eval-
uating this, one has to realize that the nervous system is
spontaneously active. How does the nervous system or
any particular decoder distinguish between spontaneous
spikes and stimulus-induced spikes? In practice, in a neuro-
physiological experiment, this distinction is performed by
the experimenter through signal time-averaging, thereby
enhancing the activity that is stimulus-locked over that
which occurs spontaneously.

A major task of the central nervous system (CNS) is to
determine whether a particular spike pattern in afferent neu-
rons is caused by an external stimulus or must be attributed
to spontaneous activity. For instance, the activity caused by
an external stimulus will produce a percept; spontaneous
activity by definition does not. In addition, stimulus inten-
sity discrimination requires that the difference in afferent
neural activity for two intensities can be distinguished from
spontaneous fluctuations. Several strategies could be
employed. The first requires the evaluation of the number
of spikes that a neuron produces over a certain time period
and estimation of a mean firing rate. This estimate is then
compared with a stored ‘‘norm’’ of spontaneous rate for that
particular neuron. The decision ‘‘stimulus present’’ is based
on the probability that the spike rate is above the norm.
Because of the stochastic nature of the neural firings, this
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decision making must be a statistical process and may
require lengthy evaluation periods to increase accuracy
and sensitivity. This evaluation can be performed faster by
an ensemble of neurons: because the spontaneous rate of the
ensemble will be less variable than the rate for individual
neurons, the comparison can be made in shorter time with
greater precision. The problem of how and where the
‘‘norm’’ is stored remains, however. This comparison
mechanism is implicitly assumed in optimal processor
theories of brain functioning (53).

An alternative strategy is to compare the detailed firing
patterns of at least two neurons with, e.g., the same char-
acteristic frequency (CF) or the same orientation tuning:
when the neurons fire at about the same time an external
stimulus is very likely. The decision will be more reliable as
more neurons are simultaneously compared. Comparisons
within a small ensemble of otherwise independently firing
afferent neurons may thus result in a fast and reliable indi-
cation for the presence of an external stimulus. For instance,
a typical inner hair cell in the basal turn of the cat’s inner ear
is innervated by about 20 independently firing auditory
nerve fibers (62) with three different spontaneous rate and
threshold value ranges. Activation of a cochlear inner hair
cell will automatically result in synchronous release of
transmitter at some of its synapses and, therefore, in the
synchronization of the firings of some of these neurons. The
amount of synchronization in the auditory nerve fibers
increases with intensity and will be determined largely by
the amount hair cell depolarization. One may assume, for
moderate stimulus levels, that six to seven nerve fibers
innervating a particular hair cell will be active simulta-
neously.

Spontaneous activity in the auditory system is normally
inaudible, because the auditory nerve fibers fire indepen-
dently and may fail to produce sufficient synchronous
firings to activate certain cochlear nucleus cells. Stimulus-
induced changes may be audible, because neighboring nerve
fibers start firing more synchronously with the stimulus (58)
so that their firings become correlated. This correlation
either increases the level of activity in higher centers or
allows synchronous activity to proceed up to the cortex and
causing correlated activity between distinct auditory cortical
areas (39).

Our senses appraise the outside world in a parallel fashion
that results in neural activity patterns organized in topo-
graphic maps (such as the various tonotopical maps in audi-
tory cortex) of the brain. Neurons that have overlapping
receptive fields, i.e., auditory neurons innervating the
same hair cell, will show a covariance in instantaneous
firing rate as well as a coincidence in the occurrence of
spikes as a result of stimulation. The topographic mappings
combined with lateral suppression will ensure that coinci-
dences in firing times will occur predominantly between
neighboring units. Coincident firings generally form a sub-
set of the firings of a group of neurons and may allow us to
extract the relevant information from the neural ‘‘noise’’.
For example, in the case of rather broadly tuned auditory
neurons in the midbrain of the frog, the subset of coincident
firings was found to represent particular stimuli (37). Hence
at least in the sensory periphery synchrony of neural activity
across units seems required to decide between spontaneous
and stimulated activity.

In subjects suffering from tinnitus, ear noise, the sponta-

neous activity of the auditory system becomes audible. A
straightforward extrapolation of the correlation theory of
brain function, elucidated above, suggests that the sponta-
neous activity of nerve cells became correlated as a result of
pathology. Salicylates and quinine in high doses produce
tinnitus in humans and presumably also in animals, as
shown by conditioning experiments (57). In these experi-
ments rats or guinea pigs were conditioned to noise from a
loudspeaker, and subsequently showed the conditioned
behavior upon administration of these drugs. In acute
experiments we showed (80) that the peak width of the
cross-correlogram between the activity of auditory cortical
neurons was significantly decreased and peak strength was 81)
after administration of both drugs. This suggests that synchro-
nous neural activity may be an important aspect in the
perception of real or ‘‘phantom’’ sound.

Combinations of spikes likely signal stimulus quantities
such as stimulus level; typically a cell’s firing rate increases
with increasing stimulus intensity, at least in the sensory
periphery. Cells are found in auditory midbrain and cortex
that have a best intermediate intensity for which the firing
rate is maximal; firing rate decreases both for lower and
higher intensities. Oftenaverage firing rate(in a preselected
time window) is the only candidate for a neural code that is
seriously considered by non-neuroscientists (e.g., neural net
modelers) and by most neuroscientists outside the field of
audition. Auditory stimuli have an inherent temporal struc-
ture, something that is largely lacking in visual stimuli, that
invites temporal codes. The timing of individual action
potentials with respect to others in the same cell (neural
pattern) or to spikes in other cells (neural synchrony) is a
powerful alternative to firing rate and represents far more
information about the stimulus than firing rate, even in the
visual system as work by Richmond’s group (46,64,82) has
shown.

Decoding of spiking neural activity (1) can thus be done
through optimum linear estimators implemented in single
neurons, in small local groups or distributed over large
populations (networks) of neurons. One can thus argue that
rate coding and temporal coding are just two extremes to be
considered in the decoding process. A simple, long duration,
rectangular kernel will extract a firing rate; an oscillatory
kernel will only extract spikes that have the same periodicity
as the kernel.

Single cell versus neural assembly coding

One of the oldest contrasts in the relation between neural
activity and behavior is that between the single neuron (or
few neurons) and the neural ensemble as the unit of coding.
This dichotomy has been around forcefully since Barlow’s
manifesto proclaiming the single unit as the physiological
substrate of psychological entities (6). If one thinks that only
a few neurons are sufficient for decoding, one likely
believes in cardinal cells, grandmother cells, bug detectors,
etc. Such cells only respond to the presence of a particular
bug or grandmother and not at all to other stimuli. Strange as
it may seem, even the neural assembly idea allows such
cells. They are ultimately the result of the high interconnec-
tion and continuous reverberation of neural activity within
the assembly. All cells in the assembly become ‘‘cardinal
cells’’ in this view and the assembly is then just a reliable
but very plastic superneuron (100). Others believe that
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the distributed spatial pattern of synaptic strengths does the
decoding, and so it is the assembly’s output and not the
individual neuron’s activity that matters. Individual neurons
may still be the dominant coding units for near threshold
stimuli and other just noticeable differences in psycho-
logical (behavioral) tasks. This has been formalized in the
lower-envelope principle(7), which states that sensory
thresholds are set by those sensory units that have the
lowest threshold for the particular stimulus used. Thus
thresholds may be represented by a limited set of sensitive
neurons (see also subsection below: ‘‘The few-neuron rate
code’’) and are little influenced by the presence or absence
of responses in the enormous number of other neurons that
are less sensitive to that stimulus.

Results (46,64) at suprathreshold levels of stimulation
show ‘‘that striate cortical neurons are not specialized for
encoding information for just one or a few simply defined
features (as cardinal cells). Instead, each neuron simulta-
neously encodes information about many features at multi-
ple scales of size. Thus, single neurons contribute to the
encoding of several or even many different kinds of
features, and any single feature is coded jointly by many
different neurons. No neuron can be regarded as encoding
information about any single feature, i.e., there is no optimal
stimulus.’’ Hence, cardinal cell actions disappear at levels
sufficiently above threshold and the assembly takes over.

RATE CODES VERSUS TEMPORAL CODES

Rate coding

Coding by average discharge rate alone necessitates a
‘‘labeled line’’ or ‘‘place’’ coding, because there is no
other means internal to the spike train itself for conveying
what kind of signal it is representing. The idea of rate coding
therefore is synonymous with the use of spatial receptive
fields (visual and somatosensory) and frequency tuning
curves (auditory), although these can theoretically also be
constructed for temporal coding (58).

Rate codes can be interpreted only by neurons or popula-
tions of neurons that have long integration times. Neurons
can be considered asleaky integratorswith time constants
that vary throughout the nervous system. In the periphery
neurons have short, few millisecond, time constants and so
do most interneurons in the cortex. In contrast pyramidal
cells in sensory neocortex have time constants of 10 ms
(75,109) and even 30 ms for some pyramids in hippocampus
(110). Is rate coding therefore limited to the thalamus and
cortex? An alternative approach is to consider integration
time constants with respect to the average inter-spike inter-
vals (ISI) that have to be processed (69). If the time constant
is short relative to the average ISI then rate coding is
unlikely (the unit may act as a coincidence detector or
more appropriately a co-firing detector), but if the time
constant is long with respect to the ISI then rate coding is
feasible. If, as in cortex, firing is characterized largely by
bursts with long inter-burst intervals, this simple classifica-
tion either breaks down or the neuron alternately must act as
a rate detector (for the spikes in the bursts) and as a
coincidence detector of the bursts.

Are spatial codesrelevant? Various response properties
are independently mapped on the two-dimensional cortical
surface and thus result in a continuously varying overlap for

certain response properties (51). Neighboring cells are
assumed to have very similar properties and they certainly
do in auditory cortex (36). This homogeneity is a requirement
for the existence of cortical modules or columns. For neurons
with slowly changing properties as a function of distance,
optimum linear detectors may read out population codes.

Patchy codes are found when a stimulus activates many
non-contiguous parts of the cortex. They may be the result
of neurons with short correlation distance through axon
collaterals with patchy connections (111) or alternatively
result from anisotropic neuron properties for, e.g., intensity
representation along an otherwise homogeneous dimension
such as for frequency sensitivity (87). Are such spatio-
temporal patterns selected for, are they the result of the
emergence of spontaneous order, or are they just a conse-
quence of economic wiring of the sensory periphery to the
cortex? Topographic maps have a correlation structure that
is mainly the result of the anatomical ordering and overlap
of receptor and motor fields (102); usually their correlation
structure is context independent but can be changed by
deprivation or learning (76). Functional or computational
maps, such as that of auditory space, mainly have an
organization or ordering through their correlation structure.
Distance between neurons in a functional map has thus to be
seen in terms of synchrony or correlation strength rather
than as a physical separation. Neural units with strong
correlations can be considered close in the neural organiza-
tion; units with weak correlations have a larger functional
distance (66,67). It is therefore possible that particular
neurons in, e.g., the thalamus and cortex are ‘‘closer’’
than two neurons in the cortex itself (78). Furthermore,
because neural correlations are stimulus dependent
(4,30,34,44), functional maps may differ for different
stimulus conditions and are plastic.

Several potential problems arise with the exclusive use of
rate–place codes (19): (1) contrast degradation may occur
because spontaneous activity and saturation of firing rates
limit the dynamic range (this can be ‘‘solved’’ by having a
range of low to high spontaneous rates distributed across the
population as, for instance, found in the auditory nerve. In
addition lateral suppression or lateral inhibition may
alleviate the problem considerably). (2) The perception of
the ‘‘pitch of the fundamental’’, a periodicity pitch which is
not conveyed by labeled lines and present only in the
temporal characteristics of firing, is difficult to explain.
(3) The superposition catastrophe or multiple object
problem can only be solved by selectively ‘‘attending’’ to
the right subset of neurons. How this is done remains to be
seen, but Crick’s ‘‘search light’’, based on asynchronous
bursting, may be a potential tool (23). Although Crick later
refuted his own idea because of the presumed absence of
bursting in non-sleep stages, recent evidence suggests that
asynchronous bursting is a very common activity in all
behavioral states (13,42,101) and this makes the ‘‘search
light’’ hypothesis viable again.

I will now present two detailed examples of putative rate
coding; one for single (or very few) neurons and the other
for a large neural ensemble.

The few-neuron rate code

Britten et al. recorded from single visual neurons in the
middle temporal area (MT, or V5) of awake behaving

IS THERE A NEURAL CODE? 361



monkeys (14). In this area the majority of neurons respond
selectively to specific types of movement in the visual
image. The stimulus used was a random-dot kinematogram
in which a proportion of dots was moving in a coherent
direction and the rest were moving randomly. Monkeys
were trained to signal the direction of motion and simulta-
neously the responses of a single neuron in MT to the
apparent motion was recorded. The stimulus was optimized
for the receptive field properties (position and display size
of the stimulus, direction and velocity of the dots) of the
neuron and the psychometric function for detection of
motion direction was evaluated as a function of the percen-
tage of dots that were moving in a coherent way. On the
basis of the neural response, the authors calculated how the
monkey (using signal detection theory and the concept of an
optimal processor) would do if it had only the neuron’s
responses to the null direction and that to the actual direc-
tion at its disposal. This was operationalized by assuming a
second ‘‘anti-neuron’’ that would respond to the null-
direction for the neuron under study. The results indicated
that for about half the cells there was no significant
difference between the psychometric functions derived
from the neuronal data and those derived behaviorally. In
the other half there were significant differences, but most of
these were related only to differences in threshold. Psycho-
physical and neuronal thresholds were not strongly corre-
lated on a cell-by-cell basis, although they were closely
related on average. For about half the neurons that per-
formed nearly exactly as the overall monkey one could say
that a monkey could perform the discrimination task with
the observed sensitivity, were it capable of monitoring a
single pair of MT cells in a neuron–antineuron configura-
tion. This suggests that single neurons or, at most, a few are
the coding elements in a threshold of visual movement
detection task, and that the decision can be made on firing
rate.

Critique. By choosing the task as optimally suited for the
properties of the neuron, the lower-envelope principle (7)
was in fact the only thing tested. Similar detection schemes
could be set up for pure tone threshold detection in primary
auditory cortex whose neuronal tuning curves and thresh-
olds are similar to those in auditory nerve. At levels close to
threshold the rate intensity function and the psychometric
detection function will likely be very similar. At sufficiently
high levels above threshold, that particular neuron will also
become sensitive to other frequencies. The iso-rate fre-
quency response contour, known as the tuning curve,
suggests that firing rate is not uniquely determining what
is going on, i.e., what intensity–frequency combination is
presented. In this case one needs to construct a perceptual
space from minimally three types of receptors (three
groups of spontaneously active populations in auditory
nerve?) to code a two-dimensional (frequency, intensity)
space of stimulus qualities. This is analogous to the
color constancy found in visual cortex area V4, where
the ratio of the firing rates in the neural channels,
derived from mixing the output of the three cone
types, codes for color in a luminance-independent way
(119). So in the case of the MT neuron, it will likely also be
sensitive to other directions of motion, other positions in the
visual field, etc. This suggests that the few-neuron rate code
only operates at near-threshold values or just-noticeable-
difference detection.

The neural ensemble-rate code

Georgopoulos and colleagues (48,63,95) describe an
extensive set of data and potential population rate codes in
primate motor cortex. Neuronal activity was recorded in
primate motor cortex simultaneously with the direction of
arm movements in three-dimensional space. The discharge
rate of 475/568 cells (84%) varied in an orderly fashion with
the direction of movement: discharge rate was highest with
movements in a certain direction and decreased progres-
sively with movements in other directions, as a function of
the cosine of the angle formed by the direction of movement
and the cell’s preferred direction. Units were generally
broadly tuned for direction. Neural population coding
assumes that for a particular movement direction each cell
makes a vectorial contribution (‘‘votes’’) for a direction in
the cell’s preferred direction and magnitude proportional to
the change in the cell’s discharge rate associated with the
particular direction of movement. The vector sum of these
contributions is the outcome of the population code (‘‘the
neural population vector’’) and points in the direction of
movement in space well before the movement begins. A
large class of weighting functions used to combine the
individual neural data will yield perfect predictions pro-
vided that (1) the weighting functions are radially sym-
metric around the preferred direction, (2) the preferred
directions are uniformly distributed in space and (3) that
the tuning parameters are independent of preferred direc-
tion. Population codes appear to be relatively immune to
cell loss.

Critique. Several similar schemes have been proposed
and tested, e.g., for the role of the superior colliculus in
saccadic eye movement generation (83). These schemes
seems to work well on the motor side of the brain. Require-
ments may be that each motor neuron innervates all relevant
muscles, such that the pool provides a weighted activation
pattern across all relevant muscles resulting in the desired
movement.

I do not know of clear examples of population-rate coding
in the sensory domain. In the auditory system a rate–place
code for vowel representation largely fails at higher input
levels because of contrast degradation; all neurons become
saturated (92). However, a shift of emphasis from high
spontaneous rate (SR) fibers to low SR fibers shows a strong
potential for rate as a code (72). How the shift of emphasis
that is required (a search light) is made obvious to the
receiving neurons in the ventral cochlear nucleus is far from
clear. Intensity coding for pure tones in auditory nerve (115)
or midbrain (29) seems to be based largely on firing rate and
to work with small ensembles of neurons (about 10 cells), so
one can imagine that intensity coding for a complex sound
will require combination of small neuron pools per fre-
quency into larger pools within a critical band.

Temporal coding

To go beyond rate coding, one can examine the statistical
relations of the spikes to one another by using inter-spike
interval (ISI) distributions for individual neurons or cross-
correlation functions for simultaneously recorded spike
trains. Temporal coding relies on coincidence-detecting
neurons with short integration times, i.e., shorter than the
modal ISI of a neuron. For cortical neurons the modal ISI
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may be of the order of a few milliseconds, whereas the
integration time is of the order of 10 ms. Is coincidence
detection, and thus temporal coding, therefore limited to the
sensory periphery and to interneurons in the cortex? Ko¨nig
et al. suggest that coincidence (co-firing) detection can take
place when the neuronal integration time is shorter than the
mean ISI (69), which for cortical neurons is rarely less than
30–100 ms.

A system that keeps track of spike arrival times or inter-
spike intervals could, in principle, convey far more informa-
tion (in the sense of Shannon) than a system relying only on
averaged firing rates (47,56,82), but this may simply be the
result of the availability of more independent variables (to
the experimenter) to solve the stimulus prediction problem.
The absolute upper limit to the transmitted information is set
by the number of distinguishable spike sequences given
some spike-timing precision (jitter). The amount of trans-
mitted information then measures the number of stimulus
waveforms that can be distinguished from the observation of
the spikes.

True coincidence detection is not optimal; an optimal
multiplier neuron encodes a signal formed by smoothly
weighting all of the near misses to coincidences between
the spike trains. Put another way, apparent sloppiness in the
detection of coincidences may actually reflect optimal mul-
tiplication (8). If cortical neurons behave as coincidence
detectors, then the timing of spikes can propagate through
cortex with great fidelity to convey information and to
synchronize other neurons (2).

In sensory systems such as the visual that are either con-
sidered static or change only slowly in time, i.e., at the rate
of occurrence of micro-saccades, smooth-pursuit eye move-
ments and head movements, temporal characteristics in
action potential sequences are usually not obvious. As a
consequence, temporal codes of information processing
have been largely neglected in the study of the visual
system; except by Richmond’s group (46,64,82), Singer
and co-workers (69,102), and by Dayhoff and Gerstein
(25). In sensory systems that are receptive to stimuli with
a higher frequency periodic structure (the auditory, somato-
sensory and electric sensory system), action potentials are
generally produced synchronously with this stimulus
periodicity and thus with each other. Timing and synchrony
in neural populations thus contain information about these
periodicities. In the auditory system, for instance, neural
time codes play a role both in auditory localization based on
time differences between the ears (where) and in pitch,
timbre and phoneme perception based on periodicities and
thus on monaural time differences (what) (19).

Modern theories for periodicity pitch combine inter-spike
interval distributions from many frequency regions of the
auditory nerve to produce pooled inter-spike interval distri-
butions from which the pitch is then extracted. For the vast
majority of periodic complex stimuli, it was found that the
pitch heard by human listeners corresponded to the most
common inter-spike interval in the auditory nerve and that
the salience of the pitch heard corresponded to the peak-to-
background ratio in the population interval distribution (19).
It has also been shown that inter-spike intervals of single
auditory nerve fibers can convey spectral information
suitable for recognizing speech (118). A problem that
remains to be explained is the apparent absence of periodicity
following by cortical pyramidal cells for rates above 50/s,

with the exception of high CF (.10 kHz) fibers in the
auditory anterior field (94). These CFs are so much higher
than the dominant formant frequencies that they are unlikely
to be activated by speech sounds. Thus periodicity pitch
detection is either done sub-cortically or the periodicity
pitch has been mapped on to the spatial dimension in cortex.

One of the great advantages of temporal codes over rate
codes is that correlations between spike patterns can be
implemented by the convergence of axons carrying the pat-
terns on to coincidence detectors. Pyramidal cells in cortex
may perform the role of detecting coincidences between
direct thalamic inputs and indirect (delayed) inputs from
local interneurons, association fibers, and commissural
fibers (69). Depending upon the relative directions of
spike-train propagation, an array of coincidence elements
can compute correlations or convolutions. Relative delays
ranging from a few microseconds to tens of milliseconds
could be created by the following mechanisms: (1) differ-
ences in cortical distances between pyramidal cells, (2)
differences in conduction velocity of horizontal fibers, (3)
multiple synaptic delays, (4) combinations of excitation and
inhibition, (5) reverberating loops of different lengths, and
(6) tuned intrinsic recovery kinetics of pyramidal cells. Thus
a population of coincidence elements embedded in a system
of relative delays can compute global auto- and cross-
correlation functions which may form the basis for complex
feature extraction.

I will now present two detailed examples of putative
temporal coding; one for single (or very few) neuron and
the other for a large neural ensemble.

The few-neuron temporal code

Of 144 low-frequency (phase-locking) neurons studied in
the central nucleus of the inferior colliculus (ICC), 85%
were sensitive to both interaural time differences (ITD) of
noise and interaural phase differences (IPD) of pure tones
(117). For most cells the discharge rate was modulated in an
approximately cyclic fashion by changes in ITD. Overall
intensity level had no effect on the ITD. When uncorrelated
noises were delivered to the two ears, there was no sensi-
tivity to ITDs. This emphasized the need for synchronized
inputs to a hypothetical comparator mechanism in the ICC
or the lower brainstem. The temporal characteristics of the
responses to interaurally delayed noise were found to be
characterized best by the synchronized-rate curve, which
was computed by taking the product of spike count and the
synchronization coefficient of the interaural phase sensi-
tivity curve. The median frequency was highly correlated
with the response frequency of the noise delay curve (r ¼
0.9, slope 1.05). Results strongly indicate support for a
cross-correlation model for interaural time sensitivity of
low-frequency neurons in ICC.

Similarly, interaural phase differences either in the low-
frequency carrier, in the amplitude-modulation waveform of
a high-frequency carrier or in a complex sound are trans-
formed into interaural time differences by the precise phase-
locking of the auditory nerve fibers and the enhancement in
accuracy provided by certain populations of neurons in the
cochlear nucleus. Combination of phase differences for dif-
ferent frequencies (components of a complex signal) allows
the auditory system to reconstruct interaural delays without
ambiguity (117). Neurons in the medial superior olive
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(MSO) respond best when sound in one ear leads that in the
other ear by an amount equal to their delay disparity but
with opposite sign. The delay disparity likely results from
the interposition of axonal delay lines. For a given inter-
aural time difference a given set of neurons in MSO will be
subject to the simultaneous arrival of spikes from ipsilateral
and contralateral AVCN cells, and this convergence causes
the MSO cell to fire. The MSO cells act as coincidence
detectors. The existence of a tuned set of axonal delay lines
synapsing on to the nucleus laminaris (a homologue of the
MSO) of the barn owl has been demonstrated (20), and for
the nucleus laminaris in the chick (84), and made plausible
for the MSO in the cat (116). Thus at the level of the MSO
the ingredients for a cross-correlation mechanism are pre-
sent; an array of delay elements, coincidence detectors and
ensemble averaging carried out by the population of acti-
vated MSO cells. In order to achieve the extreme sensitivity
for temporal disparities, of the order of 2–10ms, the MSO
units must perform an operation similar to that carried out
by the octopus cells in PVCN. It is surprising that these
octopus cells, which have a jitter in their firings of as low as
20ms, are not involved in any way with localization of
sound.

So the binaural interaction for low-frequency neurons
which are sensitive to ITDs resembles a cross-correlation
of acoustic input after filtering and phase-locking by the
peripheral auditory system (117). Ambiguities about phase
may be resolved by combining inputs from fibers with
different CFs and it is expected that neurons that do this
have broadly tuned receptive fields. It has been shown that
the auditory system, and especially the LSO, is also sensi-
tive to the ITD of a low-frequency envelope waveform.
Therefore, the cross-correlation mechanism may also
involve a sensitivity to ITDs of the modulating waveform,
since LSO cells phase-lock to that waveform. It was found
that sensitivity to ITDs of modulation envelopes in ICC
cells initially arises from the coincident arrivals of phase-
locked inputs from the two ears at binaural cells, which are
probably located in a nucleus lower than ICC because the
mean BMF for ITD was a factor 4 higher than the mean
BMF for neural synchrony in the ICC. So the observation
that many parts of the peripheral and central auditory system
are highly specialized to preserve the fine grained details of
the acoustic waveform may be also underlying their ability
to detect minute inter-aural time differences for the purpose
of sound localization. To achieve this temporal resolution,
the neural interaction may involve processes similar to those
of cross-correlation.

Critique. This transformation of temporal coding into a
map of interaural delay is only a first step in the representa-
tion of auditory space in the nervous system. Ultimately a
rate–place code in the superior colliculus results that is fine
tuned by calibration with the map of visual space (65).

The ensemble temporal code

The responses, characterized by both firing rate and syn-
chronization measures, of a large set of auditory nerve fibers
to perfectly periodic synthesized vowel stimuli: /I/, /«/
and /a/ were studied by Young and Sachs (118). The profiles
of discharge rate versus fiber CF showed peaks in the
vowels when the stimuli were presented at low sound
levels. At higher levels, the peaks in the rate profiles

disappeared, principally because of the effects of rate
saturation; the contrast degradation phenomenon previously
mentioned (118). A representation in terms of firing syn-
chrony with the periodicities in the vowels was able to
preserve the spectral structure of the vowel in detail and
largely independent of sound intensity. The authors pro-
posed an algorithm that required a combination of firing
rate, place of activity along the cochlea and temporal
information of the individual fiber’s firings. The temporal
information can be based on the period histogram (this
requires knowledge about the stimulus, which the nervous
system does not have) or on the inter-spike-interval histo-
gram (does not require knowledge about the stimulus). The
algorithm calculates the localized synchronization ratio
(LSR), a combination of synchronization indices for several
harmonics of the inter-spike-interval histogram for fibers
with CFs within a half octave on both sides of the formant
frequency, and averages this across all auditory nerve
neurons recorded from. This averaged LSR (ALSR), plotted
as a function of the harmonics of the inter-spike-interval
histogram based on the fundamental period, represents the
vowel spectrum quite accurately and is hardly affected by
intensity. So in order to preserve vowel cues across stimulus
level, a synchronized representation is required.

The similarity of periodicity pitch and vowel identifica-
tion is evident; in both cases the problem reduces to speci-
fying the spectrum of the complex signal. Pitch extraction,
according to the cross-channel correlation model, could then
occur at the level of the MSO. This mechanism would also
be required to do the spectral analysis of the inter-spike-
interval histograms.

Critique. There are some caveats to the suggestion that
only synchrony or mechanisms relying upon synchrony can
be used in speech coding. First of all, speech features such
as stop-bursts and frication at the level of the auditory nerve
may be better encoded in term of a rate–place profile (26).
Secondly, the spectral representation of vowels may be
entirely or in part based on low spontaneous rate auditory
nerve fibers as a rate–place profile depending on the
intensity (72). Such neurons have extended dynamic
ranges and do not show saturation (115). The limiting
phase-locking potential of neurons higher in the CNS is
also a concern; in AI neither the fundamental nor the
formants can be represented in temporal fashion. In essence,
the power to represent the second and higher formants
(frequencies. 1 kHz) in temporal firing patterns is already
largely lost at the level of the auditory midbrain. One can
likely bypass the spectral representation part and directly
represent the relevant periodicities in the across neuron
auto-correlograms (19).

CONSTRAINTS ON POTENTIAL NEURAL CODES

One of the most important considerations in modeling the
decoding of sensory information is acknowledging that the
stimulus and its time of presentation are unknown to the
animal. Thus one of the problems in identifying a useful
code for the central nervous system is that such a code
cannot in any way relate to features of the external stimulus,
such as time of presentation, frequency content or position
in space. For instance, one cannot use period histograms
which require knowledge of the stimulus periodicities to
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infer timing representation in a periodic sound, but one can
use the neuron’s own inter-spike interval distribution which
presents the same information (58). For transient responses
one cannot obtain useful information from an interval
histogram and thus one needs an internal ‘‘clock’’. One
cannot use latency as part of the stimulus-response features
used in a ‘‘panoramic code’’ (77); but one may use spike
latencies relative to an internally available global time
marker such as a local field potential. Thus, internal repre-
sentations or codes need to be free from external
‘‘anchors’’.

Global membrane potential oscillations may potentially
serve as a time reference. Hopfield posits that analog
information can be represented by using the timing of action
potentials with respect to an ongoing collective oscillatory
pattern of activity (56). The computation in this analog
representation is done by combining information through
pathways with different delays. The analysis requires a
coherence of the oscillation across a localized set of
neurons, but such coherence is common at frequencies in
a broad range from 1 to 200 Hz (16). The first spike in a
burst will carry information in its timing, and analog
information will also be carried in the number of action
potentials which occur within a cycle. If information is
encoded as hypothesized, then neurons that receive little
input fire with little time advance (or none at all) to the
oscillatory (e.g., 40 Hz) wave, will appear synchronized
with the oscillation and thereby with other neurons. These
synchronized neurons and their conspicuous activity may
therefore be those with the least information about a
stimulus other than its presence. In Hopfield’s model it is
the relative timing between cortical units that conveys
information about the stimulus components. If firing of
pyramidal cells in certain brain regions is thus determined
by, e.g., a 40-Hz internal clock, then obviously these regions
do not transfer information by a rate code, nor do they
transfer information by a temporal code. The only potential
signaling capacity is by the list of cells that fire; a form of
labeled line coding (59).

TRANSFORMATION OF CODES IN THE BRAIN

Largely because the topographical ordering of cortical
maps (a simple consequence of economically wiring a topo-
graphically organized sensory periphery to more central
parts), it has long been assumed that the cortex is a spatial
pattern processor and consequently it has been taken for
granted that all that is required for sensory coding is a
rate–place code. In such a code the distribution pattern of
firing rate across the cortical surface represents the stimulus.
From the belief that the cortex is exclusively a spatial pro-
cessor, it follows that all information which is not place
coded in sensory peripheries (e.g., color, texture, periodicity
pitch, acoustic space) must eventually be converted into the
‘‘common’’ language of the cortex, i.e., spatial excitation
patterns. Because the auditory periphery is characterized to
a large extent by temporal coding, there must be temporal
feature detectors, e.g., in the superior olivary complex and
inferior colliculus (71) which perform these time-to-place
transformations. In the literature on information processing
in the auditory nervous system, one finds repeatedly the
suggestion that neural synchrony is important for processing
in auditory nerve and in the lower brainstem, but generally

loses its importance in higher centers to be gradually
replaced by a rate coding (71). It has been suggested (91)
that at the level of the cochlear nucleus the recoding from a
firing-synchrony to a firing-rate mechanism has already
taken place. Or, as Capranica and Rose stated, ‘‘time
domain processing involves a transformation from a peri-
odicity code in the peripheral auditory system to a temporal
filtering assembly in the central auditory system’’ (18). This
may be an interpretation based on the gradual change from
an event-type correlation in the auditory periphery to the
rate-type correlation one finds in higher centers; for short
lag times one may even detect this rate-correlation as not
much more than a stimulus-induced rate increment. We
have shown previously that in the auditory midbrain of the
leopard frog, single-cell or population synchrony is insuffi-
cient to code stimulus intensity but that a population rate
code across a modest number of cells is capable of doing so
(29). In the inferior colliculus of the guinea pig (90), the
mean discharge rates were greatest for those modulation
frequencies which also elicited maximum synchronization.
This is in contrast to more peripheral parts of the auditory
system where the degree of synchronization is independent
of mean firing rate, and units are not tuned to modulation
frequency in terms of average rate. This suggests that the
auditory midbrain acts as a decoder for temporal information
and transforms the degree of synchrony into firing rate. This
may ultimately result in a rate–place code as, for instance,
for auditory space occurs in the superior colliculus (65).

In the auditory system (88), interaural time differences
are converted in the brainstem by means of a latency-
difference code into a spatial pattern of excitations. Neurons
in the superior olivary complex are tuned to particular
interaural time or intensity disparities. In case of ongoing
signals at both ears, the time patterns are preserved in the
coincidences so that outputs of such coincidence-detection
arrays will also contain time patterns which are common to
both ears. In case of transient signals, the result of the
coincidence detection is again a transient signal. In order to
allow information about stimulus periodicities to reach
higher auditory centers, a large part of the output of the
cochlear nucleus bypasses the lower brainstem coincidence
detectors and synapses directly onto inferior colliculus cells.

The auditory thalamus and cortex form an apparent super-
structure that operates with many synapses on the same cell,
and uses the rate code from the inferior colliculus as its
input. In cortex many inputs affect the pyramidal cell and
a single presynaptic spike has potentially little bearing on
the exact timing of the postsynaptic spike. Synchronous
spikes in the lateral geniculate nucleus of the thalamus
seem to convey an impoverished intersection of the two
neuronal receptive fields (49). Remarkably, single-unit
firing rate in cortex is rather independent of click stimulus
periodicity, whereas the amount of spike synchronization
with the stimulus clearly depends on the repetition rate (35).
This suggests a re-emergence of a synchrony code at the
level of the cortex potentially emphasized by the transient
character of its responses. One complicating factor, at least
in anesthetized animals, is that the optimal synchrony is
generally found at the dominant EEG-spindle frequency in
the preparation, which in itself tends to synchronize spike
activity. Stimulation with periodic clicks around this spindle
frequency tends to entrain this frequency (33). In the
common marmoset, the dominant modulation frequency of
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its ‘‘twitter’’ call is in the barbiturate-spindle frequency
range. Auditory cortical neurons were found to be very
finely tuned to the modulation frequency in the call (114).
One wonders whether this is an adaptation of the call
modulation frequency to a dominant brain frequency or
that the temporal tuning found is a mere coincidence of the
similarity of the spindle frequency and the modulation
frequency of the ‘‘twitter’’ call.

TAKING STOCK: ONE OR HUNDRED NEURAL CODES?

1. Individual neurons can be considered as simple filters
that may extract identical information (i.e., produce the
same response) from an ethologically meaningless sound
as well from a biologically relevant sound. Extracting
ethologically relevant features may thus require very
specialized cells or populations of neurons that combine
the individual features. Populations of neurons may be
required to provide level tolerance of coding or repre-
sentation.

2. The problem of reading a neural code for an animal is
essentially the problem of building an inverse filter that
operates on the spike train(s) to allow real-time stimulus
recognition and classification in relation to their survival
value. One can thus argue that rate coding and temporal
coding are just two extremes to be considered in the
decoding process. A simple, long duration, rectangular
kernel will extract a firing rate; an oscillatory kernel will
only extract spikes that have the same periodicity as the
kernel.

3. Of two potential candidate codes, the one that carries the
biologically relevant information more efficiently, i.e.,
with fewer spikes in the shortest time or with the smallest
number of neurons, is likely the one used by the nervous
system. It is, of course, equally likely that the potential
codes are used in combination.

4. Single cells may code for near threshold stimulus levels
(the lower-envelope principle) and can then be seen as
‘‘cardinal’’ cells. However, cardinal cell actions dis-
appear at levels sufficiently above threshold and assembly
activity in the form of population coding is needed.

5. Rate coding is essentially a labeled-line or topographical
coding. Because the auditory periphery is characterized
to a large extent by temporal coding, there must be
temporal feature detectors, e.g., in the superior olivary
complex and inferior colliculus which perform time-to-
place transformations.

6. One of the great advantages of temporal codes over rate
codes is that correlations between spike patterns can be
implemented by the convergence of axons carrying the
patterns on to coincidence detectors. Pyramidal cells in
cortex may perform the role of detecting coincidences
between direct thalamic inputs and indirect (delayed)
inputs from local interneurons, association fibers, and
commissural fibers.

7. Most higher level decoding systems, e.g., sensori-motor
coordination systems, are feedback systems, so there is
no unidirectional flow of information as in classical
information transmission systems, and this makes a
formal treatment difficult.

8. When only confirmation occurs after receiving a mes-
sage, there is no information transmitted at all in Shan-
non’s sense. But without confirmatory information there

can be no comprehension or recognition. How does the
brain as an information processor handle this?

9. If information derived from sensory stimulation is used
to continuously update the brain’s internal representation
of the ‘‘world’’, then neural codes may change with time
through learning. As a consequence the same spike
sequence may be interpreted differently (or evoke a
different behavior) later in the day.

10. One could state that representational models change
their parameters on a time scale slower than the time it
takes for information processing. It is then probably not
too much of a leap to suggest that information processing
models can be embedded in representational models.

11. Several continua in coding that we have encountered
can be fit into a scheme of corresponding entities
(Table 1). The concept of stationary brain activity
corresponds to the information processing approach
that views the brains as a decision maker, adopts rate
coding as its main strategy and endorses the single- or
few neuron approach. The non-stationary viewpoint is
embodied in the representational model of brain func-
tion that stresses learning and plasticity and employs
temporal coding in neural assemblies.

12. Could the thalamus act like ‘‘an elaborate 7th layer of
the cortex’’ and function as a ‘‘blackboard’’ on which
the cortex writes and from which it reads. Could this be
the place where the internal representation of the world
is stored and continuously updated?

13. Spontaneous activity in sensory systems is normally
imperceptible, because the sensory nerve fibers fire
independently and may fail to produce sufficient syn-
chronous firings to activate certain secondary neurons.
Stimulus-induced changes may be perceived because
neighboring nerve fibers start firing more synchro-
nously with the stimulus, and as a consequence their
firings become correlated.

14. Are ‘‘bursts’’ a neural code or does bursting represent a
more sharply tuned ‘‘brain state’’ than does the isolated
spike firing? Alternatively, are bursts used to switch the
brain from one state to another? This invites a look at
the brain as a dynamic system.

AN ALTERNATIVE: THE BRAIN AS A NON-LINEAR DYNAMIC
SYSTEM SENSITIVE TO SMALL PERTURBATIONS

Non-linear dynamics, information theory and chaos
theory are all part of a general paradigm in the study of
complex systems (55). A crucial property of systems
described by these theories is the exponentially increasing
amount of uncertainty associated with predicting the future
time evolution of the system and its related information

TABLE 1
CORRESPONDENCE BETWEEN ASSUMPTIONS AND CODING

Stationarity Non-stationarity
Information processing model Representational model
Decision making Learning
Integration Co-firing detection
Sigmoidal response function Binary response function
Rate coding Temporal coding
Single neuron Neural assemby
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content. This is determined by the sensitive dependence of
the system upon the initial conditions, so that it takes only a
very small perturbation to switch the system from one
unstable state into another. Initial conditions in the case of
the brain could be drawn from the set of all possible spatio-
temporal distributions of action potentials; small differences
in this distribution could result in vastly different states of
the brain some time later. Any stimulation could act as such
a disturbance.

But what does this have to do with neural coding? First of
all we have to accept that brain activity can be modeled as
resulting from a non-linear dynamic system. Such systems
can be in stable states (isoelectric), unstable periodic and
quasi-periodic states (one of the many characteristic EEG
states) and possibly chaotic states. If we assume that beha-
vior is isomorphic to a set of macroscopic states of the brain
and is, furthermore, the only relevant correlate of brain
activity, then the brain may be considered to operate at
the edge of chaos, a state where very small changes in the
controlling parameters (such as sensory stimuli) may cause
large macroscopic state changes, such as from one quasi-
periodic state into another (27,93). Alternatively, the brain
may be stochastic and still be sensitive to small perturba-
tional feedback just as a deterministic chaotic system (22).
If one accepts this, coding by individual neurons is largely
irrelevant, i.e., it does not matter whether a single-unit rate
code or a temporal code is at work. The only relevance of
neural firing is to be found in its capacity to induce
transitions between the many unstable macrostates found
in the brain and the relevant questions are related to what
determines the various transition probabilities. Thus only
population activity is relevant and among that the spatio-
temporal patterns that determine the transitions between
states are the relevant ones to investigate. It has been
suggested that oscillatory states in neuronal networks may
constitute a mechanism used by the nervous system to
regulate changes of state in these networks (73). Any
change in the firing patterns of neurons that causes a
transition between macrostates, for instance a single-unit
burst or an intricate multi-neuron activity pattern, now
becomes important.

Recent research, applying hidden Markov models to
analyze cortical multi-unit activity, suggests the existence
of a finite number of distinguishable small neuronal group
states (89) that correspond with behavioral states (3). These
states with reasonably stable firing rates are characterized by
differences in the synchronization between the firings of
single neurons (3). This finite number of states may be a
subset of a much larger set of states in the assembly(ies) in
which the small neuronal group participates. What hidden
Markov modeling does is use the firing of simultaneously
recorded neurons as a multivariate Poisson process whose
vector firing rates change with time. In those vectors the first
component is the firing rate in a certain time window of unit
one, the second component that of neuron two, etc. The
hidden Markov model then segments the time-dependent
activity of the local group into distinct states characterized
by firing rate combinations across the units. These states can
then be correlated with behavioral states of the animal.
Abeles et al. found a very close correlation (3). Furthermore
the cross-correlation between the firings of some unit pairs
was state dependent, suggesting modifiable cross-correla-
tions. It was furthermore suggested that ‘‘neural networks in

the cortex dwell most of the time in stable configurations of
activity (‘‘attractors’’ or ‘‘states’’), each having distinct
firing rates and neuronal interactions (3)’’. The switching
between states seems to be initiated by sudden correlated
changes in the firing rate of one or more units. Somewhat
complementary, Vaadia et al. working on the same data set
found that very often the averaged unit pair-correlation did
not discriminate between behavioral states, whereas the
temporal modulations of co-firing between two units could
differ dramatically between states (112). So these two
reports from the same group of researchers seem to suggest
that the dynamics of neuronal firing expressed in the
modulation of both short-term firing rates and co-firing
between units may be important aspects of switching
between brain and behavioral states.

The need for dynamic linking of neuronal groups in per-
ception, e.g., by stimulus-induced gamma-band oscillations
(52), may arise from the fact that within the few hundred
milliseconds in which perceptual decisions have to be made,
most single cells in cortex only fire a few, apparently
stochastic, spikes. This makes them unreliable for the
establishment of significant temporal correlations between
individual neurons (32,34) within that short period of time.
Ensemble averaging, made possible by the re-establishment
of neural correlation, may significantly increase the relia-
bility of perceptual decisions about the presence of stimulus
features. Simultaneously, the stimulus-locked activity of the
neuronal population, which occurs well before the induced
oscillations start, is still available for estimating stimulus
quality such as threshold. In this view the oscillations,
gamma as well as theta and alpha, may provide an alerting,
attentional channeling of metabolic resources to improve
signal-to-noise ratios. Burst-firing may be part of this
homeostatic process (13,23). The ‘‘places’’ that are firing
synchronously are usually those that share a sensitivity to
the same stimulus features, other than topographic place,
e.g., orientation sensitivity. The neurons in those ‘‘places’’
have to be stimulated ‘‘in phase’’, that is with separate bars
moving with the same speed in the same direction or with
one single bar. Unless other features that the individual
neurons are responsive to are correlated with, for example,
this orientation selectivity, the linking provided by the
oscillations is relevant only for the feature that induced
them.

According to the concepts of synergetics that look for
qualitative changes at macroscopic scales (54), the various
brain-state modes and the switching between them are
governed by order parameters. These could be the ampli-
tudes of local field potentials which determine the macro-
scopic, behavioral, states and entrain the activity of
individual cells. Wide-spread EEG oscillations are one
particular realization of this which may lead to an enormous
information compression, because this global synchroniza-
tion causes a highly correlated action of individual neurons
(40). Once the network reaches an attractor state, its
behavior will be constant until the next transition occurs.
In a stable state there is thus no or very little information
processing; the only information transfer occurs when the
system changes. State-switching in brain activity may thus
be more relevant than the neuronal patterns and the correla-
tions between them that are found during stable states. State-
switching is likely reflected in changes in synchrony
between individual neuron activities (112). Time-dependent
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changes in neural synchrony (4) may signal the building up
or breaking down of assemblies. When control parameters
(e.g., concentration of neurotransmitters, drugs, etc.) change
beyond a critical value, the system suddenly forms a new
macroscopic state that is quite different from the previous
one. Receptor systems in the brain are organized to detect
changes in transmitter concentration as opposed to absolute
concentration (10) which stresses the notion that change has
higher behavioral value than steady states. Thus, the neural
correlates of transitions between brain states, such as
between the two theta type rhythms and the large irregular
activity in hippocampus (113), that are related to behavioral
states may reveal more of neural coding than an exhaustive
description of single-unit properties in relation to these brain
states.

Relational order, feature binding and the emergence of
wholes (Gestalts) as revealed by synchronous population
neural activity, may supersede the single- or few unit
activity description of brain function. Relational order
between individual neurons is equivalent to the existence
and strength of correlation maps and sees assemblies as

more than a statistical result of the outcome of a large num-
ber of interactions among discrete neurons. Through the
reciprocity of connections between the neurons in the
map, which may provide a positive feedback, very small
changes in just a few pair correlations may give rise to a
sudden state change characterized by the formation of a new
assembly. Recognizing that only very small changes are
required to induce the transitions between states suggests
that concentrating on the most conspicuous phenomena in
the firings of neurons may not be as fruitful as focusing upon
certain rare but repeating phenomena. Let the search for the
neural code begin!
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