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Abstract––The ideas of dynamical chaos have altered our understanding of the origin of random
appearing behavior in many fields of physics and engineering. In the 1980s and 1990s these new viewpoints
about apparent random oscillations arising in deterministic systems were investigated in neurophysiology
and have led to quite successful reports of chaos in experimental and theoretical investigations. This paper
is a ‘‘view’’ paper addressing the role of chaos in living systems, not just reviewing the evidence for its
existence, and in particular we ask about the utility of chaotic behavior in nervous systems. From our
point of view chaotic oscillations of individual neurons may not be essential for the observed activity of
neuronal assemblies but may, instead, be responsible for the multitude of regular regimes of operation that
can be accomplished by elements which are chaotic.

The organization of chaotic elements in assemblies where their synchronization can result in organized
adaptive and reliable activities may lead to general principles used by nature in accomplishing critical
functional goals. ? 1998 IBRO. Published by Elsevier Science Ltd.
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1. INTRODUCTION

In light of the results over the past decade and a
half’s intensive experimental study of nonlinear
dynamical systems, especially in the physical sciences
and engineering, it would have been a most remark-
able result to discover that neurons, individually or in
assemblies, always oscillate in a regular, predictable
fashion and choose not to show chaotic motion at all.
The numerous ion channels which are the determi-
nants of intracellular voltage for a neuron lead
to well-studied nonlinear equations among many
dynamical variables, and the appearance of chaos in
such a rich dynamical system should hardly be a
surprise by now.

Over the past decade there have been many reports
of the observation of chaos in the analysis of various

time-courses of data from a variety of neural systems
ranging from the simple to the complex.9 The tools for
the analysis of these time-series1 have been developed
and improved over the years, and one now has ef-
ficient, user-friendly software which makes the identi-
fication of chaotic motions a straightforward, almost
routine task. Perhaps the outstanding feature of these
various analyses of time-courses from neural obser-
vations is not the presence of chaos itself but the
appearance of low dimensional dynamical systems as
the origin of the spectrally broadband, non-periodic
signals observed in many instances. It is hard to imag-
ine that the dynamics of a neuron as observed through
the measurement of intracellular voltages could be
captured in three or four degrees of freedom, and it is
frankly difficult to accept without the clear evidence we
now have that this is the case.2 This feature of the data
may actually be more interesting in the long run for
detailed investigation of neural assemblies than the full
panoply of chaotic motions possible for such systems.
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The goal of this ‘‘point-of-view’’ paper is to carry
the discussion beyond whether chaos appears in this
or that neural system, for it makes its appearance
widely. We wish to address in a somewhat specu-
lative, perhaps even opinionated fashion, the
broader, more qualitative issue how chaos is em-
ployed by neural systems to accomplish biologically
important goals. We want to focus attention on
useful features of neural systems which cannot be
understood without taking into account the chaotic
nature of neurons. This is a quite different class of
question than that associated with the usual inquiry
about where in the structure of a neural or other
system lies the origin of dynamical chaos. We are not
looking at the identification of a mechanism in ion
channel activation or other activity or at a math-
ematical aspect of model equations which lends itself
to the generation of chaotic orbits. We will illustrate
our views by drawing on specific examples which
support those views, but we realize from the outset
that the questions we raise go beyond the purely
technical, that they are more controversial and diffi-
cult to answer, and that it is plausible they have no
proper answer whatsoever. None the less, we tackle
the general class of question falling into the frame-
work of why evolution has selected chaos as an
apparently typical pattern of behavior for neural
systems. What might be accomplished by this choice,
and perhaps slightly elusively, what could not have
been accomplished by the choice of regular, predict-
able behavior—these too we touch on.

Part of our answer somewhat begs the question
or is purely self-consistent. Chaos seems to be
almost unavoidable in natural systems comprised of
numerous simple or slightly complex subsystems. As
long as there are three or more degrees of freedom,
chaotic motions are generic in the broad math-
ematical sense, which translates to unavoidable in
the practical sense. So neurons are dealt a chaotic
hand by nature and may have little choice but to
work with it. Accepting that chaos is more or less
the only choice, we can ask what benefits are
accrued by this to the robustness and adaptability
of neural activity. We may also ask what extreme
measures would have to be taken to avoid chaos, if
there were to be strong biological benefit by that. In
other words, if chaos is generic, neurons would
have had to struggle to avoid it, and would only
have done so if much were to be accomplished by
that effort. So we turn first to the benefits of chaos.
There we begin our inquiry about why neural sys-
tems are chaotic and how chaos is used by these
systems. We adopt the point of view that neurons
exhibit chaos because they really have no other
choice: that is the way dynamical systems are built.
What they do with this chaos is the issue at hand.

2. POINT OF VIEW

The first noncircular answer we give to the
question of why chaos is found in neural systems

starts with accepting that chaos itself may not be
essential for living systems. Such systems, we imag-
ine, could be built out of nonchaotic elements,
though we do not propose how this could be accom-
plished. However, we argue that the multitude of
regular regimes of operation that can be accom-
plished in dynamical systems composed of elements
which themselves can be chaotic gives rise to a basic
principle used by nature for the organization of
neural assemblies. In other words, chaos itself is not
responsible for the work of various neural structures,
but rather for the fact that those structures function
at the edge of instability, and often beyond it.
Recognizing chaotic motions in a system state space
as unstable, but bounded, this geometric notion gives
a sense to the otherwise unappealing idea of system
instability.

The instability inherent in chaotic motions, or
more precisely in the nonlinear dynamics of systems
with chaos, facilitates the extraordinary ability of
neural systems to adapt, make transitions from one
pattern of behavior to another when the environment
is altered, and consequently to create a rich variety of
patterns. Chaotic motions explore a broad sector
of the system state space albeit sparsely as the
dimension of a chaotic attractor is smaller than that
of the phase space. Its volume in the state space is
zero. In so exploring a large piece of the allowed state
space they differ from regular motions which lie on
integer subspaces and ‘‘see’’ only a small part of the
possible behaviors available to the system. Chaos
gives a means to explore the opportunities available
to the system when the environment changes, and
thus acts as a precursor to adaptive, reliable, and
robust behavior for living systems.

Throughout evolution neural systems have
developed different methods of self-control or self-
organization. On the one hand such methods pre-
serve all the advantages of complex behavior of
individual neurons, such as allowing regulation of the
time period of transitions between operating regimes,
as well as the regulation of the frequency of operation
in any given regime. They also preserve the possi-
bility of a rich variety of periodic and non-periodic
regimes of behavior. On the other hand these control
or organizational techniques provide the needed
predictability of behavioral patterns in neural assem-
blies. Organizing chaotic neurons through appropri-
ate ‘‘wiring’’ associated with electrical, inhibitory,
and excitatory connections appears to allow for
essentially regular operation of such an assembly.
The individual neurons retain their reliability and
adaptability while remaining part of a functional
network.

To place some flesh on these bones of viewpoint,
we will discuss how these principles are manifested
in some small neural systems focusing on central
pattern generators (CPGs) of some invertebrates. It
is, we readily admit, a large leap from the perform-
ance of tens of neurons to tens of billions of neurons
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in human brain functions. Our concentration on
CPGs started from the availability of long, clean
time-courses of intracellular voltages and from the
possibility to carry out extensive experiments to
address the phenomena seen in isolated neurons and
in a few coupled neurons. These experiments allowed
modification of the environment by electrical and
chemical means while preserving the ability to collect
clean and useful data. We are certainly presuming in
the promulgation of our viewpoint that lessons
learned in these simple systems have both a direct
application to more complex neural systems and
underpin the analysis of additional complexities of
those larger assemblies.

3. CENTRAL PATTERN GENERATOR EXPERIMENTS AND
MODELS

Recent work shows that the behavior of neurons
inside a network is more regular than that of the
individual neurons in isolation. This is true for small
neural systems such as CPGs11 and for neurons in the
cortex.6,12 In the latter the role of an ‘‘individual’’
neuron is an assembly is played by a relatively large
collection of neurons connected to one another in an
‘‘all-to-all’’ manner. Another important result of
recent laboratory experiments and neural modeling
efforts is this: chaotic neurons not only regulate each
other’s behavior, but easily adapt to extracellular

parameters such as the coupling strengths among the
neurons which is determined by the concentration of
neuromodulators, the ambient temperature, and
other factors.

Turning to experiments on CPGs, we first need to
illustrate the fact that the irregular pulsations of an
individual neuron can be described by a low dimen-
sional dynamical system both in chaotic and in
regular motions. Figure 1 shows the oscillations,
spiking and bursting-spiking behavior here, of a
synaptically isolated lateral piloric (LP) neuron in the
pyloric CPG of the lobster.2 This time series was used
to reconstruct a state space for the neuron using time
delay coordinates in the systematic manner noted
earlier. The data requires three coordinates to un-
ambiguously unfold the motions of the system from
their projection on the voltage axis. In three-
dimensional reconstructed phase space the time series
produce the phase portrait seen in Fig. 2. We also
evaluated the three Lyapunov exponents for this
dynamics directly from the data, and find there is a
positive Lyapunov exponent characteristic of chaos.
In all cases there is a zero Lyapunov exponent and
one negative exponent indicating that three ordinary
differential equations will produce the voltage–time
sequence (for details see Ref. 2).

An adequate three-dimensional model which
captures the features of this behavior was suggested
some years ago by Hindmarsh and Rose13 and

Fig. 1. Membrane potential of a synaptically isolated LP neuron from the pyloric CPG of lobster.
Sampling time was 0.5 ms.

Fig. 2. State-space attractor reconstructed from voltage measurements and their time delays using the
isolated LP neuron data seen in Fig. 1. In this figure we have plotted the three-dimensional vectors [V(t),
V(t"T), V(t"2T)] where tt=t0+nôs and T=Kôs. k is an integer which, based on our analysis of the data,

we have chosen to be k=15. ôs=0.5 ms.
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investigated in detail by Wang19 and by ourselves.5,14

In the simplest variant the Rose and Hindmarsh
model reads

dx(t)

dt
=y(t)+ax(t)21bx(t)31z(t)+I

dy(t)

dt
=c1dx(t)21y(t),

dz(t)

dt
=1rz(t)+rS(x(t)1x0), (1)

with r<1. x(t) is the membrane potential of the
neuron, y(t) is a recovery variable and z(t) is a slow
adaptation current. This set of equations reproduces
the phase space and time-course structure of the
membrane current as seen in the measurements.
Figure 3 shows for example a typical time-course for
x(t) from this simple model. It happens that this
particular model has a small region of parameter
space where chaos is realized in its solutions. The
main important quality for future analysis that this
model does exhibit the wide variety of patterns of
regular motions which may be performed.

The simplicity of this model coupled with its
reliability in reproducing the membrane voltage data
and its nonlinear characteristics allows us to ask
detailed questions about how this kind of neuron
responds when placed into a neuronal web with
connections modeling observed couplings in CPGs or
other settings. Of course, other models may replace
this one, but if they have fewer degrees of freedom,
they will miss the chaotic structure found in obser-

vations, and if they have many more, they may
represent an inefficient way to capture the dynamics
encompassed by membrane voltage measurements.

The behavior one may expect when nonlinear
oscillators are coupled together depends on the
detailed nature and the strength of the coupling.
A simple electrical coupling of the form
g(x1(t)"x2(t)) between membrane potentials x1

and x2, will certainly lead to complete synchroniz-
ation for large enough coupling g, and the cells will
act as a single chaotic generator.3 If the coupling is
very weak, then there are two general modes of
behavior known to us:

- the phase space of the system attractor is just the
product of the spaces of the individual systems,
so little has occurred beyond enlarging the effec-
tive dynamical system of the oscillators. No syn-
chronization or reduction in the effective phase
space occurs. This is not an attractive possibility
for coordinated action of the neurons.

- if the chaotic oscillators have both slow and fast
motions within their dynamics, as is the case for
real and model neurons, even weak electrical-like
coupling is able to bring order to the potentially
larger chaotic regime and lead to out-of-phase
oscillations of the neurons. This regime seems to
occur only in a very small domain of the coupling
parameters2.

Electrical couplings rarely occur alone in neural
networks. They are often accompanied by chemical
couplings or totally displaced by them. Experimental
data shown in Fig. 4 and computations shown in
Fig. 5 indicate clearly that the behavior of individual
neurons is much less regular than those of chemically

Fig. 3. Time-series of membrane potential from a Hindmarsh–Rose model neuron.

Fig. 4. Simultaneous intracellular recordings of the LP and pyloric dilator (PD) neurons during rhythm
generation; central inputs to the STG are intact8 (voltages traces provided by Robert Elson).
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coupled neurons suggesting that chemical coupling
actually suppresses chaos. Chemical couplings differ
from electrical in having thresholds, saturation levels,
and time delays. These are critical features for the
regularization of chaotic behavior of the individual
elements in neural assemblies.

An example in this regard is illustrative. We con-
sider the heart beat of the leech governed by the CPG
shown in Fig. 6.7 If we model the individual neurons
by Hindmarsh–Rose oscillators, we find the behavior
seen in Fig. 7 where the period of the oscillation of
the leech CPG with model neurons is shown as a
function of the common inhibitory coupling strength
å among the six neurons. The period is quite sensitive
to the value of å for small å. For å~0.7 and larger,
we see that the frequency stabilizes and occurs in
steps of a ‘‘staircase’’. In each step of this staircase we
have a nearly constant frequency for a range of å.
This frequency regulation represents a collective
regularization of the oscillations of the individual
neurons in the CPG. Left to themselves the individual
neurons would be chaotic. Even more interesting is
the fact, as displayed in Fig. 8, that nearest neighbor
neurons oscillate completely regularly and out-of-
phase.4 This permits the pumping of blood for the
leech by alternating voltage signals to the appropriate
motor functions from alternate neurons. The leech
CPG is able to regulate blood flow to the heart with
this assembly of neurons in a robust fashion since the
same frequency of pumping is achieved for a range of
coupling values among the CPG members. If the
synaptic coupling strengths, which we assume are
altered by neuromodulators, are not precisely on
target, the leech is still able to pump at a selected rate.

By varying the coupling the leech is able to change
the pumping rate to meet the need for increased or
decreased blood flow presumably in response to
sensory signals from external conditions.

What is the role of chaos here? Does it matter that
the neurons in this CPG are able to achieve chaos? It
appears that the ability of the individual neurons to
become chaotic is not important for the synchro-
nized, but out-of-phase, rhythmic pattern required
for the job of this CPG. In a qualitative sense as
shown by Mal’kov et al.16 the same result arises when
we alter the model of individual spiking-bursting
neurons in the CPG. This includes more complex,
higher dimensional models of the member neurons of
this CPG. The only requirement on the individual
neurons is that they properly capture the main
features of spiking and bursting in the time-course of
their membrane potential. Models which do not
have spiking and bursting in appropriate regimes of
external current will not, we presume, lead to the
synchronization we require for this function in
leech. Chaos would seem to have been lost as a
critical aspect of the dynamical function of the
CPG.

However, we must remember that were the neuron
not to show the correct bursting/spiking action, the
fast (spiking) and slow (bursting) motions would not
coexist in the orbits of the neuron, and we could not
achieve the regulation needed here. How can we
achieve the correct spiking/bursting behavior for a
wide range of cellular parameters in any neuron? We
suggest as central to our point of view that the robust
spiking/bursting behavior cannot be achieved with-
out chaotic individual neurons. The fact that real
neurons which show spiking/bursting are chaotic
supports this view.

The robustness of the spiking/bursting as seen in
phase space as fast and slow regions of an attractor
which vary smoothly as parameters change is also
support for this. In other words, the chaos is required
to maintain the robustness of the elements of the
CPG while they are ‘‘wired up’’ to produce a regular
firing pattern which admirably achieves the desired
function. Chaos is there so the overall system
through the response of its members is robust and
reliable; it is suppressed in the collective action when
a particular function is required of the assembly.

Fig. 5. Periodic out-of-phase oscillations of two chaotic Hindmarsh–Rose neurons connected by
inhibitory coupling. Compare these oscillations with those of the isolated Hindmarsh–Rose neuron shown

in Fig. 3. When coupled the oscillations are much more regular.

Fig. 6. Chains of neurons forming the heart beat CPG of a
leech. The black circles mean inhibitory coupling.
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4. REGULARIZATION OF CHAOS BY INHIBITION

We have emphasized that the occurrence of chaos
in neural activity comes as no surprise after so many
years of seeing chaos in so many different dynamical

systems. There is a surprise, however, in the nearly
regular activity of neurons as they go about
producing effective behavior when coupled in
assemblies. This is contrary to the expectation one

Fig. 7. Average period of heart beat CPG of the leech as a function of the inhibitory coupling å.

Fig. 8. Membrane potentials x1(t), x2(t), x3(t), x4(t), x5(t), and x6(t) from model leech CPG neurons.
The behavior of each individual neuron is chaotic.
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may have had from the study of physical systems.
For example, in fluid flow as it enters the regime
of turbulence, increasing the number of chaotic
elements gives rise to a steady increase in the number
of positive Lyapunov exponents, the number of
active degrees of freedom, and the complexity of the
oscillations.

Perhaps the simple answer is that inhibition alone
is sufficient to assure this regularization phenom-
enon. Everyone knows that inhibitory synaptic firing
is able to turn off neuronal activity for a short time,
and if such a ‘‘red light’’ behavior is produced by the
rhythmic activity of a pacemaker group of neurons,
the inhibition will stop the chaotic pulsations periodi-
cally, and we will see regular oscillations in neuronal
assemblies.

This view is not complete, however. Realistic
neural assemblies are richer than this. Not all such
assemblies have a periodic pacemaker which acts as a
‘‘red light’’ generator. This means we have to look for
a cooperative mechanism that may regularize the
chaotic oscillations without a source of periodicity.
In addition we need to address the fact that regulari-
zation of the chaotic oscillations occurs without
pause in its activity.

We have already discussed the cooperative action
of reciprocal inhibition which may lead to periodic
behavior in coupled neurons. Now we turn to the
effects of unidirectional inhibitory coupling in
regularizing chaos. These results throw new light on

the cellular basis of adaptivity and probably on
the methods of information processing in neural
assemblies.

All chaotic oscillations occur in a bounded region
of the state space of the system. This state space is
captured by the multivariate time-course of the
vector of dynamical degrees of freedom associated
with action potential generation. These degrees of
freedom are comprised by membrane voltage and the
characteristics of the various ion currents in the cell.
We can systematically and rigorously reconstruct a
mathematically faithful proxy state space for the
neuron by using the membrane voltage and its time
delayed values as coordinates for the state space. We
can see this in Fig. 2 which is the reconstructed
attractor associated with the time series of membrane
voltage seen in Fig. 1. Within each such strange
attractor is a set (infinite, in principle) of unstable
periodic orbits of the system. There are standard
methods for extracting these unstable periodic, closed
orbits from which the attractor,1 and using them
we have isolated numerous such unstable periodic
structures in the orbit in Fig. 2.

To see the role of these unstable orbits let us return
to the chaotic time series in Fig. 1. It is very import-
ant that at the beginning of each burst the spikes
behave quite regularly and the instability we call
chaos is developing slowly. This observation leads to
the suggestion that in the state space neighborhood
of the chaotic trajectory lies an unstable periodic

Fig. 9. Membrane potential of an LP neuron (upper trace) driven by one directional inhibitory synaptic
action from the anterior burster interneuron/pyloric dilator neuron (AB/PD) unit of the stomatogastric
CPG of lobster. In the lower trace is the membrane potential recorded simultaneously from one of the PD

neurons in the strongly gap junction coupled AB/PD unit.
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orbit of the neuronal dynamics. It seems clear that if
we apply inhibition regularly in time to return the
neuron to the slowly varying burst, the behavior of
the system will remain close to one of the unstable
periodic orbits and the overall mode of oscillation
will become more regular. This is precisely what
occurs when the anterior burster and pyloric dilator
neurons (AB/PD) ‘‘pacemaker’’ group in the sto-
matogastric CPG inhibits the LP neuron. As one can
see in Fig. 9 the LP oscillations when driven by the
AB/PD units behaves much more regularly than in
isolation. The same result—regularization of chaotic
oscillations—was observed in a variety of different
preparations both with direct forcing by the AB/PD
unit and with injected current spike trains of the
appropriate frequency and very small amplitude
acting as hyperpolarizing influences on the LP
oscillations.18

Quantitatively we established the regularization of
the chaotic oscillations by evaluating the Lyapunov
exponent spectrum for each experimental setting. The
positive exponent seen in isolated LP oscillations
decreased by a factor of three to five and became
nearly zero when the LP was driven with inhibitory
synaptic activity in a frequency range near 0.5 Hz.
For lower frequencies, the inhibition had little
effect, and over all ranges of frequency excitatory or
depolarizing inputs changed little about the neuronal
oscillations. It is very important that the effect is
restricted to a limited frequency band, or one could
otherwise not associate it with the dynamical
response of the neural system and the unstable
periodic orbits within its strange attractor. If the
quantitative regularization of chaotic behavior
occurred at all frequencies, the ‘‘it is just inhibition’’
response would be adequate. If the frequency of the
inhibitory input is too low, the chaotic oscillations
develop too fully between inhibitory actions, and
there is no regularization.

5. CHAOS AND NOISE

While discussing chaos at length we have avoided
the mention of ‘‘noise’’. In the study of dynamical
systems where chaotic behavior is possible and in
recognizing that chaotic signals have many of the
traditional characteristics attributed to noise, there
has developed a view of noise as high dimensional
unpredictable dynamics not different from low
dimensional chaos except by the dimension itself.
More to the point is the view that associated with
noise are the large Lyapunov exponents leading to
the inability to predict in any practical sense. In the
present context we recognize that both chaos and
noise are able to organize the irregular behavior of
individual neurons or neural assemblies, but the
principal difference is that dynamical chaos is a
controllable irregularity for it possesses structure in
state space, while noise is an uncontrollable action of

dynamical systems. It is extremely important for
information processing.

Our point of view is that information has a
temporal coding given by the time intervals between
action potentials.15 Cortical neurons, for example,
have several thousand inputs through synapses and
dendrites. If we imagine that the incoming signals are
irregular, we speculate that for chaotic signals the
neuron is able to recognize the message using
synchronization, but it is impossible to do this with
inputs from truly noisy neurons.

The experimental results and modeling results both
indicate the relevance of synchronization to global
operations, for example, in vision processing, such as
object segmentation and binding phenomena.10,17

For chaotic neurons rapid synchronization or de-
synchronization is possible and seems to be quite
typical. However, assemblies of ‘‘noisy neurons’’ are
incapable of generating such large scale rapid and
reversible synchronization and desynchronization.

There is a possible function of noise, seen even as
high dimensional essentially unpredictable chaotic
motion, in neural network studies. In high dimen-
sional systems composed here of many coupled
nonlinear oscillators, there may be small basins of
attraction where, in principle, the system could
become trapped. Noise will blur the basin boundaries
and remove the possibility that the main attractors
could accidentally be missed and the highly func-
tional synchronized states lost to neuronal activity.
Some noise may persist in the dynamics of neurons to
smooth out the actions of the chaotic dynamics active
in creating the robust, adaptable networks. The
chaos itself should not be mistaken for noise, as the
former has phase space structure which can be
utilized for synchronization, transmission of infor-
mation, and regularization of the network for
performance of critical functions.

6. CONCLUSION

Strictly speaking a paper such as this has no
‘‘conclusion’’ per se, just an end. Before reaching
that, we want to speculate on how the ideas we have
discussed which are rooted firmly in the analysis of
temporal chaos and the identification of low dimen-
sional dynamical systems in measured time-courses
for neurons may alter when we go up numerous
orders of magnitude in the number of neurons.

For neural oscillations in the cortex, for example, it
is almost certainly inadequate to describe it in detail
by low dimensional dynamics. It may be that certain
highly filtered measurements as typically found in
electroencephalogram data remove enough degrees
of freedom to appear low dimensional, but the raw,
unfiltered view is certain not to be so simple. We
instead imagine that the cortex acts in much the same
way as nonequilibrium, excitable media where the
chaos is spatio-temporal and has high dimension.
This spatio-temporal chaos can be distinguished from
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spatial distributed noise using certain universal
scaling rules for its phase space structures, but more
detail than this we cannot even speculatively suggest
now.

We can guess, however, that this spatio-temporal
chaos is only a waiting state for the nonequilibrium
medium called the cortex. In this ‘‘waiting’’ state one
sees the highly irregular spiking activity we might
associate with spatio-temporal chaos. In effect, the
medium has connections among the chaotic neurons
‘‘turned off’’ while waiting for external signaling with
information to act on. When particular sensory
stimuli are applied, this state smoothly and easily
transforms into one of the many organized states
such a medium can support. The organized states can
be characterized by more or less precise spatial
patterns or structures, and these will become visible
with appropriate sensors. It may even be possible to
utilize low dimensional dynamics for the description
of these patterns and their interaction. In some sense
the spatio-temporal chaos resolves itself into ‘‘non-
linear modes’’ of the system which themselves can
interact with each other—probably weakly. When
the environment changes again, either other patterns
emerge or the background spatio-temporal chaos
returns. Here we do not try to really characterize this
background or to suggest appropriate experiments to
direct the proper characterization of it or the elusive
‘‘patterns’’ we consider.

In approaching the end here, we can restate our
‘‘view’’ by suggesting that nature uses complex
dynamics of neural assemblies in promoting the
principles of adaptability and reliability as well as in
providing rapid response to changing external stimuli
for information processing and response. The latter

idea focuses on instability in the phase space of a
chaotic complex system. Our notion is that the use of
this instability to control the system toward a selected
target state is rapid because of the instability itself.
Chaos itself is a necessary companion of complex
dynamical systems with many varied patterns of
behavior.

In this framework one may conclude that it is not
necessary to make a special account of the chaotic
dynamics of individual neurons or neural ‘‘groups’’
and to mold it into regularity. We argue that in the
attempt to understand the behavior of assemblies of
neurons, this would be a serious error. Chaos exists
in the time-course of real neurons, and we cannot
expect to predict a priori the correct regular coopera-
tive behavior of even a few coupled neurons if the
individual members are incorrectly modeled. So we
are drawn back to chaos as a reality of member
neurons in assemblies, and this ‘‘view’’ paper has
attempted to extract out of some observations and
some computations a broader view of the role of that
chaos even when it is reorganized in collective regular
motions.
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