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Abstract
The nonequilibrium stationary state of an irreversible spherical model is
investigated on hypercubic lattices. The model is defined by Langevin equations
similar to the reversible case, but with asymmetric transition rates. In spite
of being irreversible, we have succeeded in finding an explicit form for the
stationary probability distribution, which turns out to be of the Boltzmann–
Gibbs type. This enables one to evaluate the exact form of the entropy
production rate at the stationary state, which is non-zero if the dynamical
rules of the transition rates are asymmetric.

PACS numbers: 05.10.Gg, 05.70.Ln, 75.10.Hk

1. Introduction

The spherical model was introduced by Kac [1] as a modification of the Ising model in
which discrete spin variables are replaced by continuous ones, but subjected to the spherical
constraint, which is a condition that ensures the thermodynamic properties of this system for
any temperature. The critical behaviour of this model was first analysed by Berlin and Kac
[2], and the exact solution can be found in any dimension d. The model displays a continuous
phase transition for d > 2, with non-classical critical behaviour for 2 < d < 4 and mean
field properties for d > 4. The rich critical behaviour [3], together with the establishment of
many exact results, has made the spherical model a good laboratory for statistical mechanics
methods.

Being defined in a static way by the Boltzmann–Gibbs probability distribution, the
spherical model has no dynamics. However, a dynamics can be assigned to the model by
the introduction of a set of Langevin equations [4], which will rule the time evolution of
the spin variables now transformed into stochastic variables. The Langevin equations have
additive white noise and the deterministic parts are linear in the stochastic variables [5, 6].
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These variables, as in the static case, are associated with the sites of a regular lattice and, in
addition, they are subject to the spherical constraint. The stationary probability distribution
of the associated Fokker–Planck equation turns out to be the Boltzmann–Gibbs probability
distribution of the spherical model.

The time-dependent behaviour of the dynamic spherical model defined by the Langevin
equation has been examined in a series of papers [7–9]. In these works, the relaxation to the
thermodynamic equilibrium was investigated through two-point functions (autocorrelation and
response function), which enables one to quantify a distance of the system from the equilibrium
state [10]. This approach is based on an extension of the fluctuation–dissipation theorem to
non-equilibrium states [11, 12]. We remark that the nonequilibrium situations analysed in these
papers, in which the system relaxes to the equilibrium, should be distinguished from the ones
that concern us here, namely the situation in which the system finds itself in a nonequilibrium
stationary state.

The deterministic part of the Langevin equations, which we call force, may be understood
as the gradient of the Hamiltonian defining the spherical model. In other words, the force is
conservative. Since the Hamiltonian is a quadratic form, the force is linear in the stochastic
variables so that the linear coefficients make up a symmetric matrix. In this paper, we consider
Langevin equations for which the forces are still linear, but the coefficients lose the symmetric
property becoming nonconservative. The set of Langevin equations with these nonconservative
linear forces, together with the spherical constraint, defines the irreversible spherical model.
We show here that, in spite of the irreversibility, the stationary probability distribution can be
written as being of the Boltzmann–Gibbs type. The description of the stationary distribution by
a Boltzmann–Gibbs-type function has already been found in models with Ising spin variables
that lack detailed balance [13–17].

In the stationary state, the system is no longer in the state of thermodynamic equilibrium
because the forces are nonconservative. In this case, there will be a continuous production
of entropy. The second purpose of this paper is to calculate the production of entropy in
the stationary state, which, as we shall see, can be done exactly. The entropy production
rate for systems described by a set of Langevin equations, or by the associated Fokker–Planck
equation, can be obtained from an expression introduced by Tomé [18], and also considered by
van den Broeck [19], which was derived from an expression advanced by Schnakenberg [20]
for systems described by a master equation. The critical behaviour of the entropy production
rate is shown to be similar to that of the energy of the equilibrium spherical model.

2. Spherical model

The spherical model [2, 3] is defined as follows. On a d-dimensional hypercubic lattice, with
N sites and periodic boundary conditions, a continuous spin variable σr is attached to each site
r of the lattice. The usual nearest-neighbour interaction Hamiltonian is written as

H(σ ) = −
∑

r

∑
e

Jeσrσr+e + μ
∑

r

σ 2
r , (1)

where the summation in e is over the d orthogonal unit vectors that define the d-dimensional
hypercubic lattice. In a cubic lattice, for instance, these unit vectors are e1 = (1, 0, 0),
e2 = (0, 1, 0) and e3 = (0, 0, 1). We consider the anisotropic case in which the interactions
are distinct for distinct directions. The symbol σ stands for the set of configurations {σr} of
the spins and Je and μ are the parameters.

The probability distribution of configuration σ is given by

P(σ ) = 1

Z
e−βH(σ ), (2)
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where β = 1/kBT , with kB being the Boltzmann constant and T the temperature. The parameter
μ is not free, but should be chosen such that∑

r

〈
σ 2

r

〉 = N, (3)

which is called the (mean) spherical constraint [21, 22].
The dynamics of the (mean) spherical model may be formulated through the Langevin

equation

dσr

dt
= fr(σ ) + ηr(t), (4)

where the force fr(σ ) is given by

fr(σ ) = − ∂

∂σr
H(σ ) (5)

or

fr(σ ) =
∑

e

Je(σr+e + σr−e) − 2μσr. (6)

As usual, the noise term ηr(t) has the properties

〈ηr(t)〉 = 0 and 〈ηr(t)ηr′ (t ′)〉 = 2�δr,r′δ(t − t ′), (7)

where � = kBT and T is identified with the heat-bath temperature.
The time evolution of the probability P(σ, t) of state σ at time t is given by the Fokker–

Planck equation

∂P(σ, t)

∂t
= −

∑
r

∂

∂σr
Jr(σ, t), (8)

where Jr(σ, t) is the probability current, given by

Jr(σ, t) = fr(σ )P(σ, t) − �
∂

∂σr
P(σ, t). (9)

The probability distribution given by equation (2) is the stationary solution of the Fokker–
Planck equation. In fact, in the present case, each probability current at the stationary state,

Jr(σ ) = fr(σ )P(σ ) − �
∂

∂σr
P(σ ), (10)

vanishes, and we may say that the system is in thermodynamic equilibrium.

3. Irreversible spherical model

In order to induce an irreversibility, and inspired by the Langevin equation (4), we introduce
the irreversible dynamics by

dσr

dt
= fr(σ ) + ηr(t), (11)

where the forces are now given by

fr(σ ) =
∑

e

(Jeσr+e + J−eσr−e) − 2μσr, (12)

and cannot be derived from a Hamiltonian anymore unless Je = J−e for all e. The parameters
Je and J−e, in this context, should be understood as the strengths of the transition rates of
the Markovian process defined by the Langevin equation, and not as an exchange integral
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entering the Hamiltonian as in the reversible case. Note that, as before, μ is not free but is a
time-dependent parameter that should be chosen so that constraint (3) is fulfilled.

The Fokker–Planck equation has the same form as before,
∂P(σ, t)

∂t
= −

∑
r

∂

∂σr
Jr(σ, t) = −

∑
r

∂

∂σr

[
fr(σ )P(σ, t) − �

∂

∂σr
P(σ, t)

]
, (13)

but now the forces fr(σ ) are nonconservative and given by (12). In the stationary state, the
probability current

Jr(σ ) = fr(σ )P(σ ) − �
∂

∂σr
P(σ ) (14)

does not vanish anymore, although the stationarity condition∑
r

∂

∂σr
Jr(σ ) = 0 (15)

is fulfilled for the stationary probability distribution P(σ ).
The stationary probability distribution P(σ ) is obtained by assuming a form similar to

(2), namely

P(σ ) = Ce�(σ ) with �(σ ) =
∑

r

∑
e

Beσrσr+e − A
∑

r

σ 2
r , (16)

where the summation is over the nearest-neighbour pairs and A and {Be} are parameters to be
found. We start by writing the stationary Fokker–Planck equation (15) in the form∑

r

gr(σ ) = 0, (17)

where

gr(σ ) = ∂ fr

∂σr
+ fr

∂�

∂σr
− �

∂2�

∂σ 2
r

− �

(
∂�

∂σr

)2

, (18)

which was obtained after dividing the stationary equation (15) by P(σ ). The substitution of
�(σ ), given by (16), and fr(σ ), given by (12), into (18) shows that g(σ ) is a quadratic form in
the variable σr plus a constant. This constant is 2(μ − �A), and should vanish. We conclude,
therefore, that

A = μ

�
. (19)

Using this result, gr(σ ) becomes the quadratic form

gr(σ ) =
∑

e

Be
(
ce σ 2

r+e + c−e σ 2
r−e

) − 2A
∑

e

σr(ce σr+e + c−e σr−e)

+
∑

e

Be(ce + c−e)σr−eσr+e +
∑

e,e′
e⊥e′

Be(ce σr+e + c−e σr−e)(σr+e′ + σr−e′ ), (20)

where

ce = Je − �Be and c−e = J−e − �Be. (21)

The trivial solution of (17) is obtained by setting ce = 0 and c−e = 0, which gives
Je = �Be = J−e, leading us back to the reversible model. To obtain a nontrivial solution, we
substitute expression (20) into (17) and rewrite it in the form∑

r

∑
e

Be(ce + c−e)σ
2
r − 2A

∑
r

∑
e

(ce + c−e)σrσr+e +
∑

r

∑
e

Be(ce + c−e)σr−eσr+e

+
∑

r

∑
e,e′
e⊥e′

Be(ce + c−e)(σr+e + σr−e)σr+e′ = 0, (22)
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which is solved by setting ce + c−e = 0, leading to the condition

Be = 1

2�
(Je + J−e). (23)

Therefore, the irreversible model defined by equations (11) and (12), which embodies the
parameters Je, J−e and μ, has a stationary state of the Boltzmann–Gibbs type given by (16)
with the parameters {Be} and A given by (19) and (23). It is worthwhile to note that a totally
asymmetric dynamics is obtained by setting J−e = 0, in which case Be = Je/2�, a result valid
in any dimension. The totally asymmetric dynamics has been shown to exist in systems with
Ising spin variables in one and two dimensions [13, 15].

4. Entropy production rate

The variation of entropy S of a system with time can be split into two parts as

dS

dt
= 	 − 
, (24)

where 	 is the entropy production rate and 
 is the entropy flux from the system to the
environment. Following [18], we will now obtain a more explicit formula for 	 and 
. From
the definition of entropy,

S(t) = −
∫

dσP(σ, t) ln P(σ, t), (25)

its time derivative can be written as
d

dt
S(t) = −

∫
dσ

∑
r

Jr(σ, t)
∂

∂σr
ln P(σ, t) (26)

after using (8) and integrating by parts. Combining this last equation with the definition of
probability current (9), we have

d

dt
S(t) = 1

�

∑
r

∫
dσ

{
[Jr(σ, t)]2

P(σ, t)
− Jr(σ, t) fr(σ )

}
. (27)

Comparing this equation with (24), and since the first term is non-negative, we associate it
with the entropy production,

	(t) = 1

�

∑
r

∫
dσ

[Jr(σ, t)]2

P(σ, t)
, (28)

and we obtain the expression


(t) = 1

�

∑
r

∫
dσJr(σ, t) fr(σ ) (29)

for the entropy flux, which can have both signs. In the stationary state, one has 	 = 
, and
we can use either expression (28) or (29) to calculate the entropy production rate.

From now on, we restrict ourselves to the simple case in which Je and J−e are independent
of e, that is,

Je = J and J−e = J′, (30)

but J �= J′, and the parameter Be = B being independent of e, which leads to

B = J + J′

2�
. (31)
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Using the results of the previous section in expression (28), the entropy production rate
per site 	∗ = 	/N can be evaluated as

	∗ = d

2�
(q0 − q2) (J − J′)2, (32)

where q0 and q2 are defined by

q0 = 〈
σ 2

r

〉
and q2 = 〈σr−eσr+e〉, (33)

with e being any one of the unit vectors. Note that 	∗ vanishes when the reversibility condition
J = J′ is satisfied, as expected.

Using the stationary probability distribution (16), we obtain the following results for q0

and q2:

q0 = 1

2

∫ π

−π

· · ·
∫ π

−π

ddk

(2π)d

1

A + 2B
∑d

i=1 cos ki

= 1

2

∫ ∞

0
dt e−At

∫ π

−π

· · ·
∫ π

−π

ddk

(2π)d
e−2Bt

∑d
i=1 cos ki

= 1

4B

∫ ∞

0
dξ e− A

2B ξ [I0(ξ )]d , (34)

where the identity x−1 = ∫ ∞
0 dt e−tx (for x > 0) was used, and the integral representation of

the modified Bessel function of first kind of order n, In, was invoked. By a similar procedure,
it is also possible to evaluate q2 as

q2 = 1

4B

∫ ∞

0
dξ e− A

2B ξ [I0(ξ )]d−1 I2(ξ ). (35)

The parameter μ should ensure the spherical constraint, which is simply 〈σ 2
r 〉 = 1 or q0 = 1.

Setting the right-hand side of equation (34) equal to 1, one has B as an implicit function of A.
If we define θ = 1/B = 2�/(J + J′), the production of entropy per site becomes

	∗ = d

θ
(1 − q2) J∗, (36)

where

J∗ = (J − J′)2

J + J′ . (37)

Note that the quantity 	∗/J∗ is a function of θ only, and a graph 	∗/J∗ × θ is plotted
in figure 1 for dimensions d = 1, 2, 3. In one dimension, an analytical expression is available
and is given by

	∗

J∗ = 1

8
(
√

16 + θ2 − θ ). (38)

When θ → 0, the quantity 	∗/J∗ approaches a constant cd (in d dimensions), which is given
by

cd =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
, d = 1

1 − 2

π
, d = 2

d

4

∫
BZ

1 − cos 2k1

d − ∑d
i=1 cos ki

ddk

(2π)d
, d � 3,

(39)
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Figure 1. Plot of 	∗/J∗ as a function of θ in d = 1, d = 2 and d = 3.

where the integration above is over the Brillouin zone (BZ). For d = 3, we obtain
c3 = 0.314 762 . . .. Note that in d � 3, the quantity 	∗/J∗ equals the constant cd in the
ferromagnetic phase, θ � θc, where θc is given by

1

θc
= 1

4

∫
BZ

1

d − ∑d
i=1 cos ki

ddk

(2π)d
. (40)

For d = 3, we obtain θc = 7.913 552 . . ..

5. Conclusion

In this paper, we have investigated a system in a nonequilibrium stationary state. The (mean)
spherical model is a suitable laboratory where many exact results are available, and we have
succeeded in finding an exact form for the probability distribution, despite the fact that the
system is not in equilibrium state (as testified by the non-zero value of the entropy production).
It is worthwhile to mention that the probability distribution found is of the Boltzmann–
Gibbs type. The knowledge of this particular form allowed us to explicitly evaluate the
stationary entropy production. The origin of the nonequilibrium behaviour in our work, which
is responsible for the non-zero entropy production, goes back to the unbalanced transition rate
to the opposite direction, Je �= J−e (for any e). If, on the other hand, the condition Je = J−e is
satisfied for any e, the stationary entropy production vanishes.
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