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Abstract

We analyze a threshold contact process on a square lattice in which particles
are created on empty sites with at least two neighboring particles and are
annihilated spontaneously. We show by means of Monte Carlo simulations
that the process undergoes a discontinuous phase transition at a definite value
of the annihilation parameter, in accordance with the Gibbs phase rule, and that
the discontinuous transition exhibits critical behavior. The simulations were
performed by using boundary conditions in which the sites of the border of the
lattice are permanently occupied by particles.

PACS numbers: 05.70.Fh, 05.70.Ln, 05.50.+q

1. Introduction

According to the Gibbs phase rule [1], the coexistence of k thermodynamic phases occurs
within a subspace of codimension k — 1 of the whole thermodynamic phase space, the space
spanned by the thermodynamic fields. In particular, the coexistence of two phases occurs
in a subspace of codimension 1. In a one-dimensional thermodynamic phase space or along
an arbitrary line within a thermodynamic phase space of any dimension, the coexistence of
two phases must occur at a definite point on the line. The coexistence over an interval of
the line, called generic phase coexistence [2, 3], is therefore ruled out. Since discontinuous
phase transitions are associated with phase coexistence, along the line, the discontinuous phase
transition occurs at the point of coexistence. The simplest example of a model exhibiting this
behavior is the Ising model in the presence of a field. If one varies the field, at a constant
low temperature, the system undergoes a discontinuous phase transition at zero field, the
coexistence of phase occurring precisely at zero field.

This picture of a discontinuous phase transition, a direct consequence of the Gibbs phase
rule, is valid for systems in thermodynamic equilibrium. Whether it can be extended to include
phase transitions in nonequilibrium systems at the stationary state is an open question. The

1751-8113/11/135002+11$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA 1


http://dx.doi.org/10.1088/1751-8113/44/13/135002
mailto:oliveira@if.usp.br
http://stacks.iop.org/JPhysA/44/135002

J. Phys. A: Math. Theor. 44 (2011) 135002 E F da Silva and M J de Oliveira

anisotropic contact process, known as Toom’s NEC model, as well as some nonequilibrium
models for the depinning of a bound interface has been shown to display coexistence over a
finite interval of the external parameter [2-5]. Numerical simulations performed on a version
of the threshold contact process in two dimensions have been used to show that this model
also exhibits generic phase coexistence [6—8]. In all these examples, the asymmetry of the
dynamic rules or the orientation dependence of the moving interface plays a crucial role for
the appearance of the generic phase coexistence [3, 6]. First-order transition has also been
found to occur in several related models [9-12].

In this paper, we analyze another version of the threshold contact process on a square lattice
and show that the discontinuous phase transition occurs at a definite value of the annihilation
parameter in accordance with the Gibbs phase rule. In addition, we show that it displays critical
behavior in the neighborhood of the discontinuous transition, similar to the critical behavior
of a continuous transition except that the exponent related to the order parameter equals zero.
Another example of a model with absorbing states and critical discontinuous phase transition
is the one studied by Lipowski [13]. The present threshold contact process as well as other
versions of the threshold contact process [14—16] belong to a class of nonequilibrium models
defined on a lattice whose dynamics is governed by a master equation. The nonequilibrium
character is evinced by the absence of detailed balance in the stationary state.

In the version of the threshold process that we analyze here, particles are annihilated
spontaneously and are created on empty sites that have at least two nearest-neighbor sites
occupied by particles. According to these rules the empty lattice is an absorbing state. In a
finite lattice this state will eventually be reached for any initial condition if we wait enough
time. The situation is different on a infinite lattice. In this case the system may not reach
the absorbing state and may remain in the active state characterized by a nonzero density of
particles. However, even in an infinite lattice, if we start with a finite number of particles they
will eventually disappear even if the creation rate is large. The growth may continue until a
maximal rectangular cluster is reached. Beyond this point, the growth is not allowed because
the rules forbid the creation of particles on the boundary of a rectangular cluster. This result is
in contrast with the ordinary contact process for which a cluster may be grown from a single
particle if the creation rate is large enough.

We remark that in one dimension the threshold contact process is trivial in the sense
that in the stationary regime it displays only the absorbing state. In one dimension the
creation is possible only on empty sites having the two nearest-neighbor sites occupied. As a
consequence, a cluster of empty sites with two of more sites will not shrink. It will grow and
eventually take the whole lattice.

Our main purpose here is to determine the stationary properties of the threshold model in
the thermodynamic limit and show that in this limit the discontinuous phase transition occurs at
a definite value of the external parameter, in accordance with the Gibbs phase rule. To this end
we study the model on finite lattices of several sizes and obtain the thermodynamic properties
by means of numerical extrapolation. To circumvent the peculiarities of the threshold contact
process, namely the fall into the absorbing state and the shrinking of finite clusters, we use a
boundary condition in which the sites of the border of a finite square lattice are permanently
occupied by particles. Using this expedient the creation of particles is always possible even if
the lattice is empty because particles can be created in the corners of the lattice.

We have also studied the threshold process by means of an ensemble in which the number
of particles is held fixed and by the use of the same boundary conditions. Although the change
of ensemble in equilibrium statistical mechanics is well established, this is not the case of
nonequilibrium models defined by stochastic rules. However, in some cases it is possible to
change from a constant rate ensemble to a constant number of particle ensemble [17-20], as
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happens with the present model. As in the case of thermodynamic equilibrium, the ensembles
are equivalent only in the thermodynamic limit. Numerical simulations performed on the
ensemble with constant particle number give the same properties as the original constant rate
ensemble if the size of the system is sufficient large.

The properties of the threshold contact process have also been obtained by means of
mean-field approximations, which predicts a discontinuous transition. However, as usually
happens with mean-field approaches, the discontinuous transition occurs along a certain range
of the parameters, in disagreement with the Gibbs phase rule. The situation here is similar to
mean-field approaches used in equilibrium cases in the sense that for a certain range of the
parameter-two states can be reached. However, in the equilibrium case the free energy can
always be used to decide which of the phases is more stable.

2. Model and mean-field approximation

The threshold contact process studied here is defined as follows. Each site of a square lattice
can be in two states: occupied by a particle or empty. At each time step a site is chosen at
random. If it is occupied by a particle, then it becomes empty with probability «. If the chosen
site is empty, then it is occupied with probability 1 if the number of nearest-neighbor occupied
sites is equal to or greater than 2; otherwise it remains empty. In the stationary regime, this
model displays a phase transition from an active state with a nonzero density of particles p,
occurring at small values of «, to an absorbing state characterized by a vanishing density of
particles. As we see, at the transition point @ = «,, the density of particles, which plays the
role of the order parameter, jumps from a nonzero value to a zero value. In the remaining of
this section we make use simple and pair mean-field approximations to obtain the properties
of the model.

For convenience we associate a stochastic variable 1; with each site i of the lattice
that takes the values O or 1, according to whether the site is empty or occupied. From the
dynamic rules we may establish the evolution equation for the one-site probability P (#;). This
equation involves the joint probability of a cluster of five sites, the site i itself and its four
nearest neighbors. In the simple mean-field approximation the stochastic variables »; and 7;
are treated as independent so that the probability of the five-site cluster is approximated by the
product P(1;) [] j P(n;) where j runs over the nearest-neighbor sites of the site i. This leads
us to the following evolution equation for the density of particles p = P(1):
fl—’t’ =6p°(1 = p)* +40°(1 = p)* + p*(1 = p) — ap. (D
The first three terms on the right-hand side correspond to creation of particles by pairs, triplets
and quadruplets, respectively, and the last to the spontaneous annihilation. In the stationary
state, the density of the active phase is given by

a=(1-p)p©6—8p+3p?). 2
In figure 1 we have plotted p versus «. For « > ap = 0.815423, the only stable phase is the
absorbing state, p = 0. For o < «, there is also an active state, characterized by p # O,
given by the upper branch of the curve defined by (2). Depending on the initial condition one
approaches one or the other state.

To obtain the pair mean-field approximations [21-23], in addition to the equation for
the one-site probability, we also consider the evolution equation for the two-site probability
P(n;, n;) where i and j are the nearest-neighbor sites. This equation also involves the joint
probability of a cluster of five sites, either the site i itself and its four nearest neighbors, or the
site j itself and its four nearest neighbors. In the pair mean-field approximation the probability

3



J. Phys. A: Math. Theor. 44 (2011) 135002 E F da Silva and M J de Oliveira

1 T I T T T I T
0,8 - —
0,6 — —

pmf smf

p - -
04— _
02 _

0 ’——’:'T_—_—‘-l_‘—_-_l | 1 | 1 | 1
0 0,2 0,4 0,6 0,8 1

o

Figure 1. Density of particles p versus « obtained by simple mean-field (smf) and pair mean-field
(pmf) approximations. Initial conditions starting above the dashed line approach the active state,
p # 0. Below this line, the absorbing state, p = 0, is reached.

of the cluster of five sites is approximated by the product [ [, P(;, nc)/P(n;) where k runs
over the nearest-neighbor sites of the site i. A similar factorization is used when the central
site is the site j. This approximation is written in terms of P(1) = p, the probability of a
site being occupied, and P(01) = u, the probability of a pair of nearest-neighbor sites being
empty and occupied. The evolution equations for these two variables are

dp 3ut 8u’ 6u?
£ - - + — ap, 3)
d  (1-pP (A-=p32 1-p
du u? 2u?
—20u +ap. 4)

d - (1—-pP  (1-pp
The stationary nonzero solution for p is given parametrically by

60 — 802 + 303

T 3410 —602+303

o (&)

and
a=o0(c — 120 —3), (6)

where 0 = u/(1 — p). Again when o > oy = 0.528 153 the only phase is the absorbing
phase, p = 0. For o < «y, there is also an active phase characterized by p # 0. One reaches
one or the other phase depending on the initial condition.

When o < «p, the two phases can be reached depending on the initial conditions. If
we start at a point below (above) the dashed line shown in figure 1 we reach the absorbing
(active) state. This is in contrast with the equilibrium situation for which the stable phase can
be determined by means of the free energy. Actually, as we see by numerical simulations,
the overall mean-field picture is not correct although the upper branch of p versus « for small
values of o gives correct results.

4



J. Phys. A: Math. Theor. 44 (2011) 135002 E F da Silva and M J de Oliveira

! I 0.8 I I I T T
[ — 10 7 =
08— s 40 —
— 80 06
r +«—— 160 T
— 320 |
0.6 |
Pt 1P oal-
04 - |
021
02 |
0 8
0 0.2 0.4 0.6 0.8 1 34
o o

Figure 2. Density of particles p versus a obtained by Monte Carlo simulations on a square lattice
for several values of L. The plot on the right is an enlargement of the plot on the left.

3. Monte Carlo simulations

The Monte Carlo simulations were performed on a square lattice with N = Lx L sites. We
used a boundary condition such that the sites at the border of the lattice are permanently
occupied by particles. We start with an initial condition in which the lattice is full of particles.
At each time step a site is chosen at random and the time is increased by an amount equal to
1/N. If the chosen site is occupied by a particle, then it becomes vacant with a probability
a. If the chosen site is empty, then a particle is created at the site if at least two nearest-
neighbor sites are occupied by particles; otherwise it remains vacant. After discarding the
initial configurations the average number of particles n and the variance in the number of
particles X are determined from the remaining configurations. The quantities n and X have
been determined as a function of & by using a number of Monte Carlo steps ranging from 10°
to 107. Figure 2 shows the density of particles p = n/N versus « for several values of the
system size L. As one increases L, the density approaches a step function at @« = o, = 0.352.
Figure 3 shows the variance X versus « for some values of L. This quantity displays a
maximum at a certain value of « for each value of L, which approaches o, as one increases L.
The maximum value of the variance diverges as one increases L. For sufficiently large values
of L the variance diverges as

X ~e2, @)

where ¢ = @ — «,, as can be seen in the inset of figure 3.

The value of «, can also be determined by a time-dependent Monte Carlo simulation,
defined as follows. Instead of a finite square lattice we consider an infinite quadrant of a
square lattice. If we denote the sites of the square lattice by (7, j) the sites of the quadrant
are those with the property i > 1 and j > 1. The boundary condition is such that the sites at
the border of the quadrant, (i, 0) and (0, j), are permanently occupied by particles. At each
time step a particle among the n particles inside the quadrant is chosen at random and the
time ¢ is increased by an amount 1/n. With probability p the site becomes empty. With the
complementary probability 1 — p one does the following. One of the four nearest-neighbor
sites is chosen at random, say site k. If the site k is empty, then a particle is placed at k with
probability 1/n; where ny is the number of particles in the neighborhood of k, if n;, > 2.
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Figure 3. Variance in the number of particles X versus o obtained by Monte Carlo simulations on
a square lattice for several values of L. The slope of a straight line fitted to the data points in the
inset equals —2.

Figure 4. Snapshots taken at 7 = 10000, 50 000 and 100 000 mcs, from left to right, for « = 0.352.
The number of particles are, respectively, 1061, 1788 and 5585.

If n, < 1, the site k remains empty. One can readily show that these transition rules are
equivalent to the original rules given above as long as p = «/(4 + «).

The simulation is performed by starting with a particle at site (1, 1). Figure 4 shows
snapshots of the configurations taken at three instants of time obtained for « = 0.352. The
average number of particles n is determined as a function of time # by repeating the simulation
several times. We have used a number of runs ranging from 100 to 1000. The supercritical
regime is characterized by an unbounded increase of n with ¢, that is, n — oo ast — oo. The
simulations show an exponential growth of » if ¢ is large enough:

n~e, (8)
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Figure 5. Number of particles n as a function of time 7 for several values of .

thus diverging when + — oo. In the subcritical regime the average number of particles # is
bounded and reaches a finite value when t — oo so that p = 0 because the system is infinite.
The change from one behavior to the other defines the transition point. This property is used
to determine the transition point from the log—log plot of n versus ¢ as shown in figure 5. From
this plot we estimate the transition point to be o, = 0.352(1). If we assume the algebraic
behavior

n~tf, €))

at the critical point, we obtain from the slope of the log-log plot in figure 5 the value
¢ = 0.93(3). However, one cannot reject other types of behaviors. For instance, the numerical
results are also consistent with the behavior
t
ne (10)
which can be understood as the algebraic behavior (9) with an exponent { = 1 plus logarithm
corrections.

The transition point obtained by the time-dependent Monte Carlo simulations is in
agreement with the abrupt decay of p observed in the plot of p versus « shown in figure 2.
Indeed, the inflexion points of p versus « occur at « = 0.473, 0.392, 0.368, 0.3586, 0.3542
and 0.3529 for L = 10, 20, 40, 80, 160 and 320, respectively. A quadratic extrapolation of «
in the variable 1/L gives o, = 0.3515(10).

4. Conservative ensemble

In this section we analyze the threshold model by means of an ensemble in which the number
of particles n is held constant. The rule are as follows. At each time step a site is chosen at
random, say site i. If it is empty and have at least two nearest-neighbor sites occupied, then
another site of the lattice is chosen at random, say site j. If site j is occupied, then the particle
at this site jumps to the site i. This procedure obviously conserves the number of particles. It
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Figure 6. Density of particles p versus o obtained by Monte Carlo simulations on a square
lattice for several values of L by using the constant particle ensemble. The plot on the right is an
enlargement of the plot on the left.

can be shown [17-20] that this rule gives properties that are identical, in the thermodynamic
limit, to the original rules of the model, which we call constant rate ensemble. In the constant
particle number ensemble, the number of particles n, or the density of particles p = n/N,
works as a parameter and the probability of the transition & becomes a function of p since in
this ensemble the quantity « is not given a priori. If we define an active site as an empty site
with at least two nearest-neighbor sites occupied by particles, then it can be shown [17-20]
that the quantity « is related to the number of active sites n,. by

o= (1)

n

Equation (11) allows us to determine « in simulations performed by the use of the rules of the
constant particle number ensemble.

We have performed simulations on a square lattice with N = L x L sites with the same
boundary conditions used previously, that is, the border of the lattice is permanently occupied
by particles. For each density of particles we have determined « by using equation (11) and
a number of Monte Carlo steps ranging from 10° to 107. Figure 6 shows the results obtained
for several values of the system size L. Increasing L the curve p versus « approaches a step
function at the same value «, obtained by the constant rate ensemble.

To check that the curves of density versus « approach a step function we proceed as
follows. For each value of p we plot « as a function of 1/L as shown in figure 7. All curves
shown is this figure approach the same value as one increases L. Extrapolations obtained by a
quadratic fitting give the same value of o, within the statistical errors, namely o, = 0.3516(5),
in excellent agreement with the constant rate ensemble result found previously.

5. Discussion and conclusion

We have shown by numerical simulations that the discontinuous phase transition occurring in
the threshold contact process occurs at a definite point of the parameter « in accordance with
the Gibbs phase rule. This has been accomplished by the use of two distinct ensembles and by
an appropriate boundary condition that circumvent some peculiarities of the model, namely
the fall into the absorbing state and the shrinking of finite clusters. The two ensembles give
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Figure 7. Plot of « as a function of the inverse of the system size L for several values of the density
of particles p. A quadratic extrapolation in the variable 1/L gives results for «. within the interval
0.3511 < o, < 0.3521.
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Figure 8. Density p versus « for the linear system size L = 40 obtained from the constant
rate ensemble (stars) and constant particle number ensemble (circles). The vertical dashed line
indicates the transition point o, = 0.3516.

the same properties in the thermodynamic limit, obtained here by numerical extrapolation of
finite systems. It is worth comparing the results coming from the two ensembles as shown
in figure 8 where the density p is plotted against o for the case of a lattice of linear size
L = 40. One observes that the curves are very close to one another except around the loop
appearing in the constant particle number ensemble. However, the loop disappears in the
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thermodynamic limit and both curves become identical. We remark that the loop should not
be confused with a van der Waals loop [24] and that it is not a peculiarity of nonequilibrium
models. It has been observed previously in equilibrium models [24] in which case it is due
to the surface tension contribution to the thermodynamic potentials. We remark that although
hysteresis is usually expected to be present around a first order, no hysteresis has been found
in simulations performed by using the constant rate ensemble. However, the loop observed
in simulations performed by means of the constant particle ensemble could be identified as
hysteresis although it disappears in the thermodynamic limit giving rise to a tie line.

In equilibrium systems, discontinuous phase transitions usually are not critical in the
sense that the spatial and time correlation lengths are finite. The correlations diverge when
the two or more phases become identical, at the critical point. Nevertheless, discontinuous
phase transition with divergence of the correlation length is not impossible and has been called
critical first-order phase transition [25]. Critical behavior at a discontinuous phase transition
may also occur in nonequilibrium systems as is the case of the class of models belonging to
the voter model [26, 27] or to the compact direct percolation as seems to be the case of the
present threshold process. The critical behavior in the threshold model studied here can be
seen from the behavior of p as a function of ¢, as given in equations (9) or (10), and also from
the behavior or the variance X as a function of «, as given in equation (7).

If we wish to describe the critical behavior of the critical first-order transition by a set of
critical exponents, then the exponent related to the order parameter should vanish, that is,

g =0. (12)

The relation 28 + y = dv, between § and the exponents y and v, , related to the variance per
site x = X/L? and to spatial correlation length, is therefore replaced by

y =dv,. (13)
Assuming the following behavior for the variance,
X ~ 8—(y+d\u)’ (14)

and taking into account the result (7), it follows that y + dv; = 2 which combined with
equation (13) leads us to the following results for the exponents y and v :

y =1, and v, =1/2, (15)

thus supporting the compact direct percolation critical behavior of the first-order phase
transition occurring in the present two-dimensional threshold process. Since the upper critical
dimension of the compact direct percolation is d = 2 one expects logarithm corrections in the
critical behavior of some quantities. If this is the case, then the correct behavior of n versus ¢
is given by (9) instead of (10).
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