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Abstract

The solvatochromic shifts of the m — #* transition of all-trans-(-
carotene in isopentane, acetone, methanol and acetonitrile are stud-
ied using a sequential Monte Carlo/quantum mechanics (S-MC/QM)
methodology. These different solvents are examples of systems of varied
nature, differing in dielectric constants and covering a wide range of po-
larities, and including also polar and non-polar solvents. In S-MC/QM
we first generate the structure of the liquid using Metropolis MC simula-
tion and then perform the QM calculations in statistically uncorrelated
configurations. It is shown that, in these cases, including only 40 QM
calculations gives statistically converged results. To deal with elongated
solutes the box of the MC simulation has been extended to a large rect-
angular shape. Then, a nearest-neighbor distribution function has been
developed and generalizes the concept of solvation shells for a solute of
any arbitrary shape. The calculated results are converged with respect
to the number of solvent molecules that are included according to the
nearest-neighbor distribution function. The results are found to be in
very good quantitative and qualitative agreement with experiment. The
dipole moments of the ground and excited @ — 7* states of J-carotene
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are both zero and the transition shifts are thus dominated by the dis-
persive interaction. The inclusion of dispersion interaction in energy
differences is then discussed.
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1 Introduction

The study of molecular systems in the liquid phase is important for under-
standing a great number of chemical, physical and biological processes[1]. The
solvent interaction leads to changes in the molecular solute affecting its spectro-
scopic, structural and reactive properties. For this reason, the study of solvent
effects has been a topic of increased interest[2, 3, 4]. In the theoretical front
the basic ideas developed by Onsager[5] and Kirkwood[6] have led to sophisti-
cated cavity theories, where the solute is enclosed in a cavity and the solvent is
treated by a continuum polarizable dielectric medium. Tapia and Goscinski[7]
have developed one of the first successful self-consistent reaction field (SCRF)
theories that has been extended further by many others[8, 9, 10, 11, 12, 13,
14, 15, 16, 17]. Present continuum models include sophisticated procedures,
where the solute is treated with electron correlation effects[15, 16] leading to
more accurate reaction fields, and variants such as the COSMO][12] method-
ology. Warshel and Levitt[18] have suggested a hybrid quantum mechanical-
molecular mechanics (QM/MM) methodology, where the most important part
of the system is treated by quantum mechanics and the rest by classical me-
chanics. Thus in solute-solvent interaction the chromophore, and perhaps a
few other molecules, are treated by QM and the solvent is considered by clas-
sical point charges[19, 20, 21, 22, 23, 24, 25]. This idea was further developed
by Blair and co-workers[25], by Gao[20] and by Zeng and co-workers[26] that



considered that a liquid has not one but many structures at a certain tem-
perature. A liquid is, indeed, statistical by nature and the liquid properties
are, in fact, statistical averages. Thus they performed Molecular Dynamics
and Monte Carlo simulations to generate the structure of the liquid. Gao
has further developed this idea generating a successful Monte Carlo QM /MM
method[20, 21, 22].

In Monte Carlo simulation of liquids the configurational space necessary for
configurational averages is generated by Metropolis sampling technique and
includes temperature effects. Although this is a more realistic representation
of the liquid nature of the solvent, it has the concomitant disadvantage that
several quantum mechanical calculations are necessary to obtain the proper
statistical average. For instance, in studying solvatochromic shifts the tran-
sition energy has to be calculated several times for structures generated by
the simulation, in order to obtain the average value that corresponds to the
solvation shift. In many cases millions of calculations have been performed on
these supermolecular systems composed of the solute treated by QM and the
solvent as classical point charges. Furthermore, if the solvent is not explicitly
treated by QM it is difficult to include dispersion interaction that, in fact arises
from the reciprocal polarizations of the solute by the solvent, and the solvent
by the solute.

We have extended this idea to a sequential Monte Carlo/Quantum mechan-
ics (S-MC/QM)[27]. In this procedure we first generate structures of the liquid
and only subsequently perform the QM calculations in those structures. The
basic advantage is that opposite to conventional QM /MM, in the S-MC/QM,
the solute and all solvent molecules, up to a certain solvation shell, are treated
by quantum mechanics[28, 29]. The number of necessary solvation shells to
be included can be systematically analyzed and converged results obtained|[28].
As an important development, we have also shown that the drawback of having
to perform a large number of quantum mechanical calculations to obtain the
average of the property of interest may be strongly alleviated considering the
statistical correlation between successive configurations[27, 29, 30]. As MC
generates structures that belong to a markovian chain, the auto-correlation
function of the energy gives important information on the relative statistical
importance of the successive structures generated by the simulation. Of course,
highly correlated structures will give very little new statistical information[30].
In other words, performing calculations on every structure generated is an enor-
mous waste that gives no new statistical information. Reducing the number of
quantum mechanical calculations is a great saving in computational resources
that can be used to explicitly include the solvent molecules and thus leading
to a more realistic treatment of the intermolecular solute-solvent interactions.
As an example, the solvatochromic shift of pyrimidine in water[31] was suc-



cessfully treated including all water molecules up to the third solvation shell.
This required supermolecular quantum-mechanical calculations of the pyrimi-
dine and 213 water molecules, an explicit 1734 all-valence electrons, properly
anti-symmetrized. With this procedure specific interactions such as charge
transfer and hydrogen bonds are naturally treated. Detailed analysis of the
convergence of the average value with the number of configurations are made
elsewhere[30, 32|, and shows that the average value is indeed converged.

Inclusion of dispersive interaction in solvent effects[33] has been a real chal-
lenge for present theoretical methodologies[2, 3]. If the solvent molecules are
not explicitly included the polarization of the solute onto the solvent is not
considered and dispersion is omitted. As dispersion is a double excitation, de-
rived from single excitation in the solute and single excitation in the solvent,
one possibility is to have previously calculated and separated the spectrum of
the solvent molecule and try including this information in the calculation of the
solvatochromic shift. This was attempted by Rosch and Zerner[34]. Another
possibility is, of course, to explicitly include the solvent molecules in the super-
molecular QM calculations. Our S-MC/QM procedure allows this to be done
in a natural way[27, 28, 29]. In this connection it is very important to note
that it is possible to include dispersive interaction in transition energy, using
a singly-excited configuration interaction (CIS). It has been demonstrated[35]
before that a configuration interaction electronic structure calculation on a
supermolecule that contains only single excitations includes dispersion inter-
actions between the two subsystems when energy differences are taken between
the Hartree Fock (SCF) ground state and low energy excited states in which
single excitations dominate. This theorem is proven up to second order in per-
turbation theory[35]. This has been used to calculate the solvatochromic shifts
of benzene in different solvents (polar and non-polar)[29] with very good agree-
ment with the experimental results. As the dipole moment of benzene is zero in
the ground state and in the low-lying 7 — 7* excited states the solvatochromic
shifts in different solvents is basically given by dispersion (quadrupolar inter-
action is very small) and leads to a red shift, as described earlier by Liptay[36].

In short, our S-MC/QM methodology uses structures generated by MC
simulation to perform QM supermolecular calculations of the solute and all
the solvent molecules up to a certain solvation shell. As the wave-function
is properly anti-symmetrized over the entire system, CIS calculations include
the dispersive interaction[35]. The solvation shells are obtained from the MC
simulation using the radial distribution function. This has been used to treat
solvatochromic shifts of several systems, such as benzene in C'Cly, cyclohexane,
water and liquid benzene[29, 37]; formaldehyde in water[28, 38]; pyrimidine in
water and in C'Cl4[31]; acetone in water[39]; methyl-acetamide in water[40]
etc.



In this paper we address to the solvation of all-trans-3-carotene in differ-
ent solvents. The solvent effects on the visible spectrum of [3-carotene is a
real challenge for theoretical methodologies for at least two aspects. First, the
visible spectrum is characterized by a strong m — 7* absorption transition in
the region of 450 nm that suffers only slight shifts in different solvents[41, 42].
As the dipole moment is zero both in the ground and excited state, the shift is
dominated by dispersion interaction. This interaction is, in addition, small for
different solvents. For instance, the shift of the 7 — n* absorption transition
from isopentane (non-polar, non-protic, has small polarity and small dielectric
constant) to methanol (polar, protic, has large polarity and large dielectric
constant) is only 120 cm™'[42]. Because of the low volatility of S-carotene
the gas phase value of the absorption transition is not known experimentally
and correlation of solvatochromic shifts in different solvents is very important.
Second, the elongated shape of the molecule (see below) suggests the use of
a non-spherical distribution of solvent molecules around the solute. This is
parallel to the cavity-shape problem in SCRF methods[43]. For our purposes,
the use of spherically defined solvation shells is not recommended. This is a
delicate point as the concept of solvation shells is in essence, but not com-
pulsory, related to a spherical distribution[44]. We will see that this is not
only inconvenient but, to some extent, incorrect. Thus, we develop a nearest-
neighbor distribution that follows the molecular shape and can be used for
any molecule, no matter how elongated or distorted. The visible spectrum of
[-carotene has been analyzed before by Applequist[45] using a cavity model
where the chromophore was treated as classical point dipole oscillator. Myers
and Birge[41] studied the change in oscillator strength of the absorption of
(-carotene in different solvents and found that the results depend on the pro-
late cavity geometry. Zerner made an estimate of the shift in cyclohexane[46]
using SCRF. Abe and co-workers[42] analyzed solvent effects in 51 different
solvents and made an empirical analysis in terms of reaction field models.
Here, we use our S-MC/QM methodology in a nearest-neighbor solvation shell
to calculate the solvatochromic shift of (-carotene in four different solvents;
namely, isopentane, acetonitrile, acetone and methanol. These four solvents
are selected on the basis of their nature, exemplifying polar, non-polar, protic,
non-protic, low polarity and large polarity solvents.

2 Monte Carlo Simulation

2.1 Rectangular Box and Computational Details

Monte Carlo (MC) simulations were carried out for all-trans-f-carotene in
four solvents: acetone ((CHj)2CO), acetonitrile (CH3CN), isopentane



((CH3)2CHC H,C Hj3) and methanol (C H3OH). Standard procedures[47] were
used, including the Metropolis sampling technique[48] in the canonical (NVT)
ensemble and periodic boundary conditions using the image method. Because
of the prolate shape of [-carotene we used a rectangular box instead of the
more conventional cubic box. Therefore, a cuttoff radius was not used, but
each molecule was restricted to interact either with a molecule or its respective
image, not simultaneously with both. Therefore, this system (1 solute + N
solvent molecules) corresponds to an infinitely dilute solution. In figure 1, the
solute (all-trans-(-carotene) in the smallest rectangular box used in our sim-
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Figure 1: Tllustration, in scale, of the all-trans-(3-carotene in the
smallest rectangular box (30x30x70.6)A% used in our simulations.

ulations is illustrated. Note that the (-carotene is almost a planar molecule
with approximately 29 A in the long axis and 6 A in the small axis. Thus,
even in the smallest box there was sufficient space to wrap the (3-carotene in
a bulk environment.

Table 1
Information of the simulated systems: the density, the box size, the dielectric
constant and the polarity of the solvent.

Solvent Density Box Size Dielectric Normalized
g/em®  (x,y,z)in A  Constant (¢) Polarity (EJ)
[sopentane  0.6001 (45.5,45.5,87.5) 1.828 0.006
Acetone 0.7682 (38.5,38.5,77.0) 21.36 0.355
Methanol 0.7676  (30.0,30.0,70.6) 32.66 0.762
Acetonitrile 0.7649 (33.5,33.5,72.5) 35.94 0.460

The four systems were simulated at T = 298K and were consisted of one
[-carotene molecule and 900 solvent molecules in a rectangular box with linear
dimensions, which correspond to the solvent densities[49]. The solvent den-
sity, the box size, the dielectric constant and the normalized EX Reichardt
polarity[1] are shown in table 1. Note the variation of the dielectric constants



of the selected solvents. These solvents also exhibit large variations of the nor-
malized solvent polarity, changing from 0.006 (isopentane) to 0.762 (methanol)
with the intermediate values of 0.355 (acetone) and 0.460 (acetonitrile)[42].

The intermolecular interactions were described by the Lennard-Jones plus
Coulomb potential,

ona onb S\ 12 o\ 6 2
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where 3¢ is the sum over the sites of molecule a, 3? is the sum over the sites
of molecule b, £;; = | /z:;, 04 = \/7;0;, €*/(4me,)= 331.9684 A kcal/mol and
0;, €; and ¢; are the parameters of the interacting sites. The potential param-
eters of the sites used in the our simulations were obtained in the OPLS force
field[50] and are shown in table 2. The geometry of the (-carotene, shown in
figure 2, was obtained by gradient optimization, starting from the crystallo-
graphic experimental data[51], with the Becke three-parameter-functional[52]
and the Lee-Yang-Parr correlation[53], BSLYP/6-31G level of calculation. The

Figure 2: Geometry of the §-carotene obtained with B3LYP/6-31G
optimization.

geometries of the solvents were obtained in the OPLS force field (acetone[54],
acetonitrile[55], isopentane[56] and methanol[57]). All molecules were kept in
the equilibrium geometry during the simulation. The initial configurations
were generated randomly, considering the position and orientation of each
molecule. A new MC step was generated by randomly selecting a solvent
molecule, translating it randomly in all Cartesian directions and rotating it
randomly about a randomly chosen axis. A new configuration was generated
after 900 MC steps, i. e., after closing a loop over the solvent molecules. In
this way, the number of configurations [ generated here is equivalent to the
number of configurations generated in a Molecular Dynamics simulation with
an integration over [ time steps. The acceptance of each random move was
governed by the Metropolis sampling technique. The maximum displacement
of the molecules was self adjusted after 50 MC steps to give an acceptance rate
around 50%. The full simulation consisted of a thermalization stage of 4.5x10°



Table 2
Potential parameters used in the Monte Carlo simulations (¢; in elementary
charge unit, £; in kcal/mol and o; in A).

Site q; £; 0;
[sopentane
CH; 0.000 0.160 3.910
CH, 0.000 0.118 3.905
CH 0.000 0.080 3.850
Acetone
@) —0.424 0.210 2.960
C 0.300 0.105 3.750
CH,; 0.062 0.160 3.910
Methanol
H 0.435 0.000 0.000
O —0.700 0.170 3.070
CH,; 0.265 0.207 3.775
Acetonitrile
N —0.430 0.170 3.200
C 0.280 0.150 3.650
CH; 0.150 0.207 3.775
(B-Caroteno
C(sp?) 0.000 0.105 3.750
C(sp?) 0.000 0.050 3.800
CH; 0.000 0.175 3.905
CH, 0.000 0.118 3.905
CH 0.000 0.115 3.800

MC steps, which is not used in the statistics, followed by an averaging stage of
36x10% MC steps. This is a long simulation by all present standards. Thus, the
total number of configurations generated in each MC simulation was [ = 40000.
Instead of performing a quantum mechanical calculation on every configuration
generated by the Monte Carlo simulation, we use the auto-correlation or sta-
tistical efficiency, to select the statistically relevant structures[27, 29, 30, 32].
In doing so, the subsequent quantum mechanical calculations are performed
only on some uncorrelated structures. As in previous works[28, 29, 31, 38, 40|
we fit the auto-correlation function of the energy to an exponentially decaying
function and obtain the correlation step. This assures that the structures used
in the quantum mechanical calculations are statistically (nearly) uncorrelated.



As the total number of MC configurations generated in the simulation was
40000, the averages are then taken over only 40 configurations, separated by
1000 successive configurations. The convergence of the calculated values us-
ing this reduced number of uncorrelated configurations is discussed later in
this paper. All simulation were performed with the DICE[58] Monte Carlo
statistical mechanics program.

To obtain the relative solvatochromic shifts, the excitation energies were
calculated using the ZINDO program[59], within the INDO/CIS[60] approach.
The quantum mechanical calculations were performed for the supermolecular
clusters, generated by the MC simulations, composed of one 3-carotene and all
solvent molecules within a particular nearest-neighbor solvation shell. As the
appropriate Boltzmann weights are included in the Metropolis Monte Carlo
sampling technique, the average value of the solvatochromic shift is obtained
from a simple average over a chain F; of size L of uncorrelated configurations,
where L = 40 for all the systems considered here and F; corresponds to the
excitation energy obtained for the supermolecular configuration .

2.2 Nearest-Neighbor Solvation Shells

The molecular structure of liquids are best analyzed using the concept of
the radial distribution function (RDF). This is of particular importance in
solute-solvent structures as it defines the solvation shells around the solute
molecule[44, 47]. The RDF's represent fluctuations in the local density due to
structure in the liquid. Specifically, the average density of atoms of type YV
around atoms of type X is px y(r) = pyGx_y(r), where py = (Ny/V) is
the density of type Y atoms, r is the X — Y separation and Gx_y(r) is the
RDF between atoms of type X and Y. For a solute-solvent system, the first
atom of the RDF (type X) belongs to the solute molecule and the second atom
(type Y') belongs to the solvent molecule. In the simulation, the Gx_y (r) is
obtained by accumulating and normalizing histograms with the total number
of atom pairs X — Y found in a distance between r — 0r/2 and r + 07/2,

HISTOGRAM[r— % r+ %
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where [ is the number of MC configurations analyzed during the simulation,
nx is the number of type X atoms in the solute, ny is the number of type Y
atoms in the solvent, Ny is the number of solute molecules, Ny is the number
of solvent molecules and dr is the width of each bin of the histogram. If a
liquid is structureless, then Gx_y(r) = 1.

For a system consisting of one (-carotene in solution the type X of the
RDF could be defined as both carbon (C) or hydrogen (H) atoms. Although

9



RDFs can be determined from diffraction experiments on liquid, such data
are not currently available for -carotene in solution. However, the calculated
RDFs were used here to describe the distribution of the solvent molecules
around the (-carotene and define its respective solvation shells. This struc-
tural analysis will be of great importance in the calculation of the absorption
spectrum of [J-carotene in solution. Quantum mechanical calculation of the
absorption spectrum of a supermolecular system, composed of 901 molecules,
over 40000 MC configurations is of course not possible. The alternative we
suggested[27, 29] was to perform quantum mechanical calculations after the
simulation, but using only a few selected number of solvent molecules[31, 38|
and a selected number of MC configurations[28, 29, 30, 31, 32]. The number
of solvent molecules included in the calculation is obtained from the analysis
of RDF's, using all molecules surrounding the solute up to a certain solvation
shell. This number is still large enough to preclude sophisticated ab initio
calculations but lies well within the range of semiempirical methods. The
number [ of necessary MC configurations for ensemble average has already
been reduced dramatically from 40000 to only 40, as discussed in the previous
section. We shall show that this small number gives indeed converged result,
and is a consequence of the markovian chain generated by MC simulations, as
documented before[28, 29, 30, 32]. In figure 3, the two RDFs between C' and
H of (-carotene and the central C' atom of acetone are shown as an example
of the liquid structure obtained in the simulations. Irrespective of the solvent
and its selected atom, all RDF's of 3-carotene in solution, studied here, has
the same shape with broad and low peaks (see figure 3). This just reflects the
elongated geometry of the (-carotene and the wide spatial distribution of the
carbon and hydrogen atoms. Therefore, these two RDF (Ge_y (r) and Gy_y)
can not help in the description of the distribution of solvation shells around
the [-carotene.

The RDF between the center-of-mass of the solute and the solvent molecules,
Geon—om(r) is another natural possibility of describing the solvation shells
around the (-carotene. In figure 4a, the RDF between the center-of-mass of (-
carotene and acetone molecules is shown as an example of the liquid structure.
This Gep—cowm (1) presents a clear definition of four peaks that characterize the
solvation shells around the center-of-mass of the (-carotene. The number of
solvent molecules in each shell was obtained by integrating the peaks. In the
case presented in figure 4a, 7 acetone molecules were found in the first shell
(integrating until 6.35 A), 30 in the second shell (from 6.35 to 10.65 A), 46 in
the third shell (from 10.65 to 13.85 A) and finally 108 in the fourth shell (from
13.85 to 184). Figure 4b will be discussed soon below.

Figure 5 illustrates typical configurations, generated in the simulation, of
one (3-carotene surrounded by the 7 and 37 acetone molecules corresponding
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Figure 3: The calculated radial distribution function (RDF) be-
tween carbon atoms (a) and hydrogen atoms (b) of the f-carotene
and carbon atoms of the acetone molecules, Go_¢(r) and Gy_c(r),
respectively.

to the first and second peaks, respectively, defined by Gearcar(r). Although
the center-of-mass RDF presented peaks that a priori could be considered as
solvation shells, certainly the figure 5 shows that, in the case of 3-carotene as
the solute, these peaks can not be considered as solvation shells around the
solute. As expected, the solvent molecules were distributed only in the central
part of the -carotene, close to the center-of-mass. Of course, even considering
the second or third solvation shells the Gear car(r) still gives a rather non-
uniform distribution of solvent molecules around this elongated solute.

To analyze the solvation shells of elongated molecules in solution, it is nec-
essary to define a different kind of RDF that does not grow in a spherical form,
but consider the shape of the solute. Then, we suggest here a nearest-neighbor
RDF between all atoms of the elongated solute and its nearest atom of each one
of the Ny solvent molecules, G'x _nearest (7). The G x_nearest(r) was calculated
using the same definition of equation 2, but changing the assignment of types
X and Y. Now, all atoms of the solute molecule are assigned as an unique
type X and after testing all atoms of the solvent molecule, the nearest atom of
each solvent molecule is assigned as an unique type Y. Thus, a list of nearest-
neighbors was built taking into account not a fixed atom or the center-of-mass
of the solute, but all atoms in the solute molecule. With this new list of neigh-
bors the shape of the elongate solute is taken into account in the distribution of
solvent molecules. However for small solute, like, for instance, formaldehyde,
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Figure 4: The calculated radial distribution function (RDF) be-
tween (a) the (-carotene center-of-mass and acetone center-of-mass,
Geom—cm(r), and (b) all atoms of the (-carotene and its nearest
atom of each acetone molecule, G x_neqrest(T)-

this new list of neighbors generates a distribution of solvent molecules that is
similar to that described by the center-of-mass distances. Thus, the nearest-
neighbor distribution function generalizes the concept of solvation shells for
a solute of any arbitrary shape. In figure 4b, the nearest-neighbor RDF of
(-carotene in acetone is shown as an example of the liquid structure defined
by G x_ Nearest(T), that presents a clear definition of two solvation shells around
the whole §-carotene. The number of solvent molecules in each solvation shell
was obtained by integrating the peaks. In the case presented in figure 4b, 50
acetone molecules were found in the first solvation shell (integrating until 4.35
A) and 88 in the second shell (from 4.35 to 8.05 A). Figure 6 illustrates a typ-
ical configuration, generated in the simulation, of one 3-carotene surrounded
by 50 acetone molecules corresponding to the first solvation shell as defined by
Gx_ Nearest(T). As expected, the solvent molecules are uniformly distributed
around the (-carotene. For the other solvents, the minimum distance RDF
presents the same shape as shown in figure 4b, a first well defined peak, a
second less intense peak and a long structureless tail.

In table 3, a summary of the structural analysis is shown for all four sol-
vents. Using the Gear cn(r), the first neighborhood around the center-of-
mass of the (-carotene is formed by either 5 isopentane or 7 acetone or 8
methanol or 9 acetonitrile. These solvent molecules are distributed approx-
imately between 3.55 and 6.35 A with maximum occurrency in the interval

12



(b)

Figure 5: This illustration shows the f-carotene surrounded by (a)
7 acetone molecules and (b) 37 acetone molecules corresponding to
the first and second peaks, respectively, defined by the center-of-
mass RDF, Geoy—cnm(r).

between 4.35 A (methanol) and 5.05 A (isopentane). However, the first solva-
tion shell around the entire 3-carotene using the nearest-neighbor distribution
is formed by 40 isopentane or 50 acetone or 69 methanol or 58 acetonitrile.
These solvent molecules have their nearest atom distributed approximately
between 1.35 and 4.45 A with a large maximum occurrence in ~ 2.30 A.

3 Quantum Mechanical Results

3.1 Solvatochromic Shifts

The quantum chemistry calculations are of the SCF type followed by configu-
ration interaction over singly excited configuration state functions (CIS). This
is the level of theory at which the INDO/S Hamiltonian was parametrized

13



Figure 6: Typical supermolecule used in the QM calculations. This
illustration shows the (-carotene surrounded by 50 first-neighbor
acetone molecules corresponding to the first solvation shell as de-
fined by the nearest-neighbor RDF, G x_ nearest(T)-

Table 3

Structural information obtained from the first peak of the radial distribution
functions. Distances are given in A and Nj is the coordination number obtained
from the integration of the first peak.

GCMfC’M(r) GXfNearest(r)
Solvent, Start Max. End N, Start Max. End N
[sopentane 3.85 5.05 6.35 5 1.35 2.15 4.55 40
Acetone 3.55 465 6.35 7 1.35 2.25 4.35 50
Methanol 3.35 4.35 5.85 8 1.35 2.35 4.65 69
Acetonitrile 3.45 495 6.35 9 1.35 245 4.35 58

[60]. The low energy spectrum of -carotene is dominated by excitations from
the HOMO (7) molecular orbital to the LUMO (7*) molecular orbital, where
HOMO refers to the highest occupied molecular orbital and LUMO to the
lowest unoccupied molecular orbital (illustrated in figure 7). As it can be seen
the dipole moment is zero in both the ground and the excited state and the
7 orbitals are delocalized over the polyene chain. The gas phase absorption
transition is not known experimentally. The value calculated here for the gas
phase ™ —* transition is 22230 cm™!. In solvents of any polarity it is expected
that this transition suffers a red shift. The magnitude of the shift, of course,
depends on the solvent. To obtain these red shifts we have next performed the
supermolecular calculations of [3-carotene in acetone, acetonitrile, methanol
and isopentane using the configurations generated by the MC simulation. As
(-carotene is non-polar, it is expected that the solvation shift should not de-
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pend on solvent molecules that are situated much beyond the first shell. Table
4, thus gives the calculated m — 7* transition energies of [-carotene in the
four solvents considered here. As it can be seen, in all solvents this transition
suffers a red shift compared with the gas phase value. These results are in
very good agreement with the experimental data. The relative positions are
also correct for isopentane-methanol, for instance, but has a wrong sign (still
within the statistical error) for the acetonitrile-acetone, if we use only the first
shell of solvent molecules. Whereas the experimental result gives that the shift
is larger for acetone over acetonitrile by 24 cm~! the theoretical result as this
stage gives the opposite by 12 cm~!. Including half of the second shell changes
the calculated value of acetone by only 3 cm™!, showing that indeed this value
is converged for the first shell. However, the other change for acetonitrile is
slightly larger, by 36 cm™!. As a result, including this half-shell corrects the

Figure 7: Illustration of the orbitals (a) HOMO and (b) LUMO

involved in the first m — 7* transition of (-carotene.

relative position of these two transitions. Note that the experimental shift
of 24 cm ™! is now theoretically obtained as 21 cm ™!, in excellent agreement.
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The results obtained for acetone, for instance, is a result of 40 QM INDO/CIS
calculations of one -carotene surrounded by 77 acetone molecules. Each QM
calculation is thus a 2064-valence-electron problem. The largest calculation is
for (B-carotene in isopentane, that involves 2104 valence electrons. The quali-
tative relative shifts of the 7 — 7* transitions are well reproduced in agreement
with the experimental results. Note that the solvents are of miscellaneous
type, involving both protic and non-protic, polar and non-polar and also of
low and high polarity. In this direction, it should be noted that these shifts
do not follow the increase in dielectric constants or, even, in polarity, as it
can be checked from the results given in tables 1 and 4. Thus it is not clear
that a description based on macroscopic parameters can be obtained. Abe
and co-workers[42], have found an approximate correlation but only after ex-
cluding protic solvents. Similarly, the correlations are different for non-polar
and polar solvents. In this paper, we explicitly calculate these values using
a methodology that combines statistical mechanics and quantum mechanics.
The consideration of dispersive interaction is of great importance. Analyzing
the calculated results given in table 4, one may conclude that our approach is
very successful in describing the relative shifts of this very challenging system.
Before concluding, it is rather appropriate to discuss the convergence of the
calculated result with respect to the statistics; i.e. with respect to the number
of structures used in the QM calculations.

Table 4
Summary of the calculated and experimental results for the first 7 — 7* ab-
sorption transitions of the -carotene in gas phase and in solution.

Solvent 15t Shell 15t +half Shell Experiment[42]
N Transition N Transition
Vacuum 1 22230
Acetone 1+50 2207117 1477 22074+ 17 22046
Acetonitrile 1+58 22059+19 1492 22095+ 11 22070
Methanol 1+69 22143+6 1490 22143+7 22247
[sopentane 1440 22181 +4 1+59 22182+14 22364

3.2 Statistical Convergence Analysis

In several previous applications we have shown that the auto-correlation func-
tion of the energy can be used to obtain statistically converged values from
a small number of uncorrelated structures. In the present applications, only
40 QM calculations have been performed and it thus seems quite appropriate
to discuss the convergence problem. Figure 8 shows the distribution of the
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calculated individual transition energies for the case of 3-carotene in acetone,
including 50 acetone molecules (first shell). The calculated average value, as
given before in table 4, is 22071 ¢cm™! and is shown as the horizontal line in
Figure 8. This distribution clearly shows that a single structure can not de-
scribe the liquid situation. Although, some structures can give a transition
energy that is close to the average, this is rather fortuitous and a few other
structures give transition energies that are far from the average. It is neces-
sary to consider the average of several calculations. Figure 9 shows how the
average value approaches the convergence with increased number of structures
used. As stated before, and now clearly seen in figure 8, the calculated 7 — 7*
transition energy is a converged value, after using only 35 configurations. The
results obtained for all the other solvents are similar to those shown for the
acetone case. Converged values are obtained and a single structure can not
represent the statistical nature of the liquid. It may be worth mentioning that
these results demonstrate that using gas-phase optimized geometries in solute-
solvent situations is rather artificial and this single structure clearly can not
represent the liquid environment. Using the statistically uncorrelated struc-
tures obtained from an analysis of the auto-correlation function of the energy
we obtain converged results after only a few QM calculations. The spread
of the calculated results can be used to obtain the contribution of the liquid
structure to the line broadening[25, 28, 38]. Truly uncorrelated configurations
are obtained only with an infinite separation, because the auto-correlation fol-
lows an exponential decay[27, 28, 29]. In most of our applications we have
used structures that are less than 10% correlated. It has been discussed before
that using more structures is important for decreasing the statistical error but
has no effect on the converged average value[32]. Clearly, the same analysis
can be used for the calculation of other properties[32].

4 Summary and Conclusions

The solvatochromic shifts of the m — n* transition of all-trans-(-carotene in
different solvents have been studied using a sequential Monte Carlo/quantum
mechanics (S-MC/QM) methodology. In this procedure we first generate the
structures of the liquid using Metropolis MC simulation and perform the QM
calculations in selected structures generated by the simulation. These struc-
tures are selected after an analysis of the relative statistical correlation be-
tween successive configurations. This leads to a large decrease of the number
of structures used in the QM calculations, without affecting the average con-
verged value. In the present application it is shown that including only 40
QM calculations gives statistically converged results. To deal with the very
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elongated shape of the all-trans-(-carotene solute molecule the MC simula-
tion has been first extended to a large rectangular box. The use of a spherical
radial distribution function is criticized in this case and we developed a nearest-
neighbor distribution function between all atoms of the elongated solute and
the nearest atom of each and every one of the solvent molecules. Although
this has no effect on small and regular-shaped molecules it is of great im-
portance in elongated solutes leading to a more appropriate distribution of
neighbor molecules in solution. The nearest-neighbor distribution function, in
fact, generalizes the concept of solvation shells for a solute of any arbitrary
shape. Using only the first solvation shell the calculated results are found to
be in very good agreement with the experimental results. However, to obtain
the relative shifts in different solvents of varied properties, we found necessary
to extend the number of solvent molecules. The relative shifts in isopentane,
acetone, methanol and acetonitrile are calculated in excellent agreement with
the experimental results. The different solvents are examples of systems of
varied nature, differing in dielectric constants and covering a wide range of
polarities, and including also polar and non-polar solvents.

As [-carotene itself is non-polar and the m — 7n* transition leads to a
non-polar excited state, most of the solvatochromic shifts are consequence
of the dispersive interaction. The solvation shift does not depend on solvent
molecules that are situated much beyond the first solvation shell. In the present
application, we find that inclusion of solvent molecules up to 6.0 A is enough to
give stable and accurate results, if the nearest-neighbor distribution function is
used. This has also been found in the solvatochromic shifts of benzene in differ-
ent solvents where the first solvation shell gives stable and accurate results[29].
This is, however, opposite to the case of formaldehyde (a polar molecule) in
water (a protic solvent) where solvent molecules up to a distance of 10 A,
were found to still affect the solvation shift[28]. The inclusion of dispersion
interaction in the calculation of solvent effects has been recognized as one of
the most important and difficult problems. It has been demonstrated[35] that
although dispersion is a double excitation, calculation on a supermolecule that
contains only single excitations includes dispersion interaction between the
two subsystems when energy differences are taken between the ground state
and low energy excited states in which single excitations dominate. Therefore
the CIS calculations using supermolecular structures with explicit solute and
solvent molecules seem to be an important step in this direction. Judging,
from the qualitative and quantitative results of the solvatochromic shifts of (-
carotene in different solvents, we are led to conclude that the most important
contribution of dispersion is properly included.
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