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Including dispersion in configuration interaction-singles calculations
for the spectroscopy of chromophores in solution
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In this paper we prove that a configuration interaction electronic structure calculation on a
supermolecule that contains only single excitations includes dispersion interactions between the two
subsystems when energy differences are taken between the Hartree–Fock~molecular orbital!
ground state and low energy excited states in which single excitations dominate. This theorem is
proven up to second order in perturbation theory. ©2000 American Institute of Physics.
@S0021-9606~00!51816-9#
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INTRODUCTION

It is well known that configuration interaction calcula
tions that include only single excitations from a Hartre
Fock ground state reference~CIS! often accurately produce
the nature of the low-lying states of molecular systems.
though this procedure does not always yield accurate pre
tions of transition energies usingab initio methods,1 this ob-
servation is at the heart of such parametrized models as
Pariser–Parr–Pople model2 and the intermediate neglect o
differential overlap model for spectroscopy.3 Most often
these models are parametrized at the CIS level of theory,
it is assumed that such a procedure includes the esse
correlation directly through the CI and dynamic correlati
is built in through the use of semiempirically derive
parameters.4 CIS has several advantages. It is first of
simple. Most low lying excited states are, as mention
dominated by single excitations. And CIS is a size extens
theory—that is, the results are not expected to get wors
the system size increases. This latter feature is importan
the context of this work, as we are eventually interested
calculating the spectroscopy of molecules~solutes or chro-
mophores! in solvents. This is the usual case met in eve
day laboratory chemistry.

The spectroscopy of molecules that are dissolved in
vents can undergo sizable energy shifts.5 Since most spec
troscopy is taken of chromophores in solution, it is qu
important to understand these shifts and to develop meth
for estimating them. These shifts can stem from seve
sources. The largest of these are believed to be caused b
differences in the electrostatic interactions between the
ments of a solute in its ground state and its excited state
the induced moments of the solvent.6 A second large effect
usually causing a redshift between the gas phase absor
maxima and the solution situation, is due to the differi
stabilization of the ground state and the excited state du
dispersion-interactions between the induced moments of

a!Permanent address: Instituto de Fisica, Universidade de Sao Paulo
66318, 05315-970 Sao Paulo, SP, Brazil; electronic mail: canuto@if.us

b!Permanent address: Universidade de Mogi das Cruzes/CCET, CP
08701-970 Mogi das Cruzes, SP, Brazil.
7290021-9606/2000/112(17)/7293/7/$17.00

Downloaded 29 Jul 2002 to 143.107.133.142. Redistribution subject to A
l-
ic-

he

nd
tial

l
,
e
as
in
n

y

l-

ds
al
the
o-
th

ion

to
he

solute and solvent.7–9 For a nonpolar solute molecule th
major shifts are caused by dispersion. Other effects are
active. For example, for small molecules where there are
lying Rydberg states, these states are shifted to much hi
energy because of the interaction of these larger states
rectly with the small cavity which the molecule has creat
in the solvent for its much smaller ground state. Creatin
large cavity costs energy.

Here we examine the differential dispersion between
excited chromophore and the solvent and the ground sta
the chromophore and the solvent that are the major cause
the redshift in nonpolar solvents. In this work we prove
remarkable theorem. In a supermolecule calculation incl
ing solute and solvent, thedifferencesin energies between
the ground state, described by a Hartree–Fock wave fu
tion, and a state that is dominated by single excitationsin-
cludes the dispersion through second order in perturbat
theoryeven though the calculation is of the singles only ty.
That is, the double excitations that lead to the dispers
energy in the ground state, those confined to single pro
tions on the chromophore and single promotions on the
teracting solvent molecule, see Fig. 1, panel~i!, and the spe-
cial triple excitations that are required to disperse the exc
state, confined to single excitations on the chromophore r
tive to the single excitations dominating the excited st
description coupled with single excitations on the solve
Fig. 1, panel~j!, exactly cancel. In the supermolecule calc
lation the dispersion shifts in the energydifferencesare gen-
erated through the CI matrix elements between the sin
localized on the solute and those localized on the solv
Fig. 2, panel~a!. This does not infer that either the groun
state or the excited state includes the dispersion. This is
true in a CIS calculation, and is discussed in some deta
Ref. 9.

Dispersion is generally assigned to the electrostatic
teractions between molecules that remain after all contri
tions from permanent moments have been removed.6~a! When
the chromophore has a permanent dipole, differences
tween ground and excited state dipole moments are expe
to dominate in the description of spectroscopic shifts.6 An
example where dispersion is the leading term in causing
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spectroscopic shift is benzene in cyclohexane. The first n
vanishing moment of benzene is the quadrupole, and the
ference between the ground and first excited state quadru
is very small. This contribution to the shift in the spectra
benzene in cyclohexane and benzene in the gas phase
been estimated as115 cm21. The observed redshift is2 300
cm21, and the difference is believed caused by dispersion8,9

In Fig. 1 we catalog the excitations that arise in a co
figuration interaction treatment, assuming a ground s
closed-shell reference. Single excitations, panel~b!, localized
on the solute, labeledc for chromophore, are assumed
dominate in the description of the low lying spectrum. Sing
excitations on the solvent, labeleds, are assumed at highe
energy, or else this would be a poor choice of solvent. In
actions through a CIS of these two types of localized sin
excitations in a CIS treatment give rise to excitonic couplin
Fig. 2 panel~a!. Excitations of the charge transfer type a
generally at higher energy, estimated as electron affini
minus ionization potential minus 1/Rcs , where Rcs is the
average distance betweenc ands in atomic units. Their pres-
ence at low energies is rather unusual and rather dram
often leading to colored solutions from colorless comp
nents. The double excitations of panel~f! correlate to the
ground state of the chromophore, and those of panel~g! cor-
relate to the solvent ground state. The double excitation
panel~h! represent some of the many double excitations t
are of charge transfer type. The double excitation of pane~i!
represents those that lead to the dispersion of the gro
state, that ‘‘disperse’’ the ground state~here we introduce a

FIG. 1. Characterization of some of the excited state wave functions
supermolecule system containing two moleculesc ands. Panels~f! and ~g!
represent only two of the four types of doubles that can correlate the gro
state, see the text. Panel~h! represents only one of very many possib
charge transfer doubles. Panel~j! is the only triple excitation to be consid
ered, as it ‘‘disperses’’ the excited statei→a.
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verb for later convenience!. The interactions that disperse th
single excited states that result from a CIS treatment of
chromophore are triple excitations with respect to the re
ence Hartree–Fock ground state, and they are shown in p
~j!.

In general, the wave function of a composite system oN
total electrons can be written as

C I 8J8~1,...,N!5SpS ISJA@c I
A~1,...,p!cJ

B~p11,...,N!#.

We define two subsystemsA andB in a system containingA
andB as ‘‘separate’’ if we can ignore the exchange integr
between them. In the above wave function this suggests
the antisymmetrizerA between theA andB subsystems can
be ignored. This implies, in turn, that the molecular orbita
~mo’s! of the composite system are localized onA or B, or
the exchange integrals would not, in general, vanish. Si
each orbital has integral occupation, 2, 1, or 0, and is lo
then each subsystem, in turn, has an integer number of e
trons, sayp8 in systemA. Then

C I 8J8~1,...,N!5S ISJc I
A~1,...,p8!cJ

B~p811,...,N!.

This is clearly generalizable to a collection of many weak
interacting subsystems.

Note that the above-mentioned ‘‘separation’’ does n
imply that each subsystem need be neutral, nor that the
teraction need be weak~considered charges species!, but just
that the wave function can be written as the sum of sim
products with a fixed number of electrons. In addition,
subsystem can be sizably perturbed by the presence of o
subsystems, accommodated in the above wave function s
all states of the unperturbed subsystems are included in
sums. This separation is the basis for the perturbation the
treatment of two separate systems and of dispersion.

THEOREM

The differences in energy calculated in self-consist
field ~SCF!-CIS treatment on a supermolecule consisting
two weakly interacting molecules is equivalent to a CI tre
ment including the doubles and triples that disperse the
erence ground state and all singly excited states, res
tively, through second order in Møller–Plesset perturbat
theory.

In Møller–Plesset perturbation theory the zeroth-ord
energy is the sum of the occupied orbitals, andH0

5S i f ( i ), with f ( i ) the Fock operator for orbitalf i , and the

a

nd

FIG. 2. Superposition of singles resulting from the diagonalization of theA
matrix, see the text.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7295J. Chem. Phys., Vol. 112, No. 17, 1 May 2000 Including dispersion for chromophores in solution
zeroth- plus first-order correction is the SCF energy; i.e.,
expectation value of a single determinant in the typi
closed-shell case.9 The Fock operatorf ( i )5h( i )1n( i ) and
the perturbation isV52Sn( i )1S i , j1/r i j .

A CIS treatment includes the excitations shown in pan
~b!–~e!, and their interactions shown in Fig. 2, by definitio
The only assumption we need to make for this theorem
that the exchange integrals between the two separate
ecules vanish. We will show later in the discussion that e
most of these exchange integrals will cancel, but not all.

The examination of such a theorem is motivated by
successes we have recently had in examining the spe
scopic shifts of nonpolar chromophores in nonpolar me
using single only methods.10,11

PROOF

There are several ways to begin this proof, but the f
lowing likely demonstrates best what exactly is bei
proven, and the conditions on the proof. As discussed in
following, it is not necessarily the easiest way to prove th

Consider a closed-shell ground state of a two-compon
supermolecule,A ~perhaps the chromophorec! and B ~per-
haps the solvents!. Assume that the molecular orbitals o
tained from the SCF are principally localized onA or B, or
can be made so. Consider a CI that consists of all singles
doubles that disperse the ground state, panel~i! of Fig. 1, and
all triples that disperse all the single excitations, panel~j! of
Fig. 1. The CI does not contain the localized double exc
tions that would correlate the ground state ofA, panel~f! of
Fig. 1 @there are four classes of such doubles, only one
which is shown in this panel: (i ,i )→(a,a), (i ,i )→(a,b),
( i , j )→(a,a) and two from (i , j )→(a,b), with f i and f j

occupied molecular orbitals ofA andfa andfb virtual or-
bitals of A#, or those similar double excitations localized o
B, panel~g! of Fig. 1, with mo labelsk and c assigned to
orbitals localized onB. Although the inclusion of such
doubles certainly improves the description of the grou
state of the system, they unbalance the CI for the purpose
calculating spectroscopy by lowering the ground state ene
far more than most of the singly excited configurations t
are the principle components of the low lying excited stat
The charge resonance doubles are also not included, p
~h! of Fig. 1, nor are the charge transfer doubles shown,
they are assumed to lie at much higher energy. The local
triple excitations that would correlate the single excited c
figurations and restore the balance to the CI for the calc
tion of spectroscopy if the correlating doubles were includ
are likewise not included. A CISDT of this nature is know
to yield good spectroscopic predictions, but is a sizable
culation. ~This model, of course, is not necessarily a go
predictor of two-photon states, i.e., those that are domina
by double excitations might need to be correlated by q
druples, etc.! In the following we consider diagonalizing th
space of all singles, the so-calledA matrix, and include all
the other states, those that disperse both the ground stat
all singles, through second order in Møller–Plesset pertu
tion theory.
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We write

C05c0
Ac0

B5u11̄¯ i ī ¯ j j̄ ¯kk̄¯u. ~1!

Although we write the ground state wave function as a pr
uct of the two pieces, this is only to suggest where the ex
tations will be localized. The wave function as written on t
right-hand side is an exact representation of the Hartr
Fock reference.u...u represents the usual Slater determina
and a bar over an orbital designates beta spin.
Single excitations are written as

~2!

where we are using the Rumer diagram construction12,13 for
convenience,

~3!

The interaction of two single excitations, required, for e
ample, to complete the CISA matrix is

^c ia
A c0

BuHuc jb
A c0

B&52^a j u ib&2^a j ubi& ~4!

with
^a j u ib&5^a~1! j ~2!u i ~1!b~2!&

5E ]V~1!E ]V~2!fa* ~1!f i~1!r 12
21f j* ~2!fb~2!.

~5!

This matrix element is the same for any single with any ot
single, i.e.,

^c ia
A c0

BuHuc0
Ackc

B &52^aku ic&2^akuci&'2^aku ic&. ~6!

The approximation in Eq.~6! that sets the exchange term
^akuci&50 is the onlyoperational approximation that we
will make in the following, and is the condition stated on th
theorem. We will come back to this approximation, for if n
made it suggests correction terms of a rather simple natur
the molecular orbitals of the two subsystems are reason
well localized this exchange will be small. If these orbita
are not localized then these integrals might not be small
the ideas behind treating the two subsystems separately
not valid. The spectroscopic shifts in such a strongly p
turbed system may be sizable, and still should be predic
by this treatment, as CIS is a size extensive model, but
interpretation of these terms as in Fig. 1 is not clear.

Double excitations that disperse the ground state are
the formc ia

A ckc
B . There are two singlets that arise from fo

open shells.

~7a!

~7b!

The matrix elements of interest are
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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^c0
Ac0

BuHuc jb
A ckc

B ~ I!&52^bcu jk&, ~8!

^c0
Ac0

BuHuc jb
A ckc

B ~ II !&52^bcu jk&. ~9!

The Rumer statesc jb
A ckc

B ~I! andc jb
A ckc

B ~II ! are not orthogo-
nal,

^c jb
A ckc

B ~ I!uc jb
A ckc

B ~ II !&521/2. ~10!

Schmidt orthogonalizingc jb
A ckc

B ~II ! to c jb
A ckc

B ~I! yields

c jb
A ckc

B ~ II !85c jb
A ckc

B ~ II !11/2c jb
A ckc

B ~ I! ~11!

and

^c0
Ac0

BuHuc jb
A ckc

B ~ II !8&50. ~12!

Using Møller–Plesset perturbation theory for the depress
of the ground state yields the familiar second-order equa

E0~disp!5(
j ,b

A

(
k,c

B

4^bcu jk&2/~e j1ek2eb2ec!, ~13!

which has been used to estimate dispersion many times8 In
this equation, the symbolsA andB above the sums is mean
to restrict the lower indices to mo’s centered onA or onB ~or
c and s in Fig. 1!. This expression can be derived direct
considering the six possiblySz50 determinants that aris
from four open-shell orbitals interacting withc0

Ac0
B , that is,

from standard diagrammatic perturbation theory.
Examining now the terms that disperse the singly exci

statec ia
A yields states of the formc i jab

A ckc
B , panel~j! of Fig.

1. This represents six open shells, from which can be c
structed five singlets. The state

~14!

yields matrix elements that dispersec ia
A of

^c ia
A c0

BuHuc ia jb
A ckc

B ~ I!&52^ jkubc&. ~15!

The remaining four singlets that arise are

~16!

and they all yield a zero matrix element withc ia
A c0

B after
they have been orthogonalized toc i jab

A ckc
B ~I!. The dispersion

of the statec ia
A c0

B is then given by

Eia~disp!5(
j ,b

A

(
k,c

B

4^bcu jk&2/~e j1ek2eb2ec!. ~17!

This is exactly the same as Eq.~13!. The possibility that in
this sum orbitalw j might equalw i , or orbitalwb might equal
wa is discussed in the following. Again, this expression c
be derived directly by considering the sixSz50 determi-
nants that can be generated from each
u11̄¯ i ā¯ j j̄ ¯kk̄¯u and u11̄¯a ı̄¯ j ̄¯kk̄¯u exciting j
→b andk→c, and dividing by two@the normalizer squared
in Eq. ~2!#.
Downloaded 29 Jul 2002 to 143.107.133.142. Redistribution subject to A
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In the supermolecule calculation the ground state a
each singly excited state would be dispersed by the s
amount if these terms were calculated~to second order!. The
terms that reproduce dispersion arise in the supermole
calculation in several places. First, all the orbitals ofA, and
thus the resultant integrals that comprise both the SCF
CI are effected by the permanent or induced moments oB.
Second, terms that shift the spectroscopic states~energy dif-
ferences! arise in the supermolecule calculation from the C
matrix elementsc ia

A ckc
B that would not be present in th

separate system calculations, but are included automatic
in the all singles supermolecule calculation, Fig. 2. Althou
calculated explicitly in the CIS, they can also be estima
from perturbation theory using Eq.~6!,

DEia'Eia1Eia~disp!1Eia~CIS!

2~E01E0~disp!1E0~CIS!!. ~18!

E0~CIS!50 by Brillouin’s theorem in the supermolecule ca
culation. This yields the estimated shift

DEia'Eia2E01Eia~CIS2on2A!

1H(
k,c

B

4^ icuak&2/~e i1ek2ea2ec!J . ~19!

The term in brackets is due to terms not present in the
separate calculations.

Equation~19! is only approximate, and is not used. Th
CIS A matrix is diagonalized for the supermolecule. W
need only note that the dispersing doubles and triples
considered, would add a constant to all the diagonal elem
of the CIS matrix and not effect energy differences. T
absolute energy of each state, and the eigenvectors
course, are effected.14

This completes the proof and the provisos around it.
doubt it also helps to explain why simple parametrized C
calculations can be so successful even for compo
systems.10,13 It also bodes well forab initio models of cor-
relation that are based on the idea that the single excitat
are the important ones for spectroscopy, such as SAC-15

and STEOM.16 However this analysis also points out th
single excitations from heavily correlated reference stat
the underlying theme of SAC-CI and STEOM, might not
as successful as heavily correlating the ground and the
gly excited states, where advantage of these cancellat
can be used.

It may be that this theorem is also true to higher ord
in perturbation theory. We have not explored this. Howev
the above demonstration with its provisos is also true
random phase approximation calculations.17–19

We might examine this theorem further, not neglecti
the exchange termŝakuci&, Eq. ~6!. The ground state dis
persion energy is then given by

E0~disp!5(
j ,b

A

(
k,c

B

4~^bcu jk&21^bcuk j&22^bcu jk&

3^bcuk j&!/~e j1ek2eb2ec!, ~20!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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which reduces to Eq.~13! setting the exchange to zero. Th
excited state dispersion, using the above-delineated triply
cited states, becomes

Eia~disp!5(
j ,b

A

(
k,c

B

~4^bcu jk&214^bcuk j&224^bcu jk&

3^bcuk j&!/~e j1ek2eb2ec!

2(
j

A

(
k,c

B

3^acuk j&2/~e j1ek2ea2ec!

2(
b

A

(
k,c

B

3^bcuki&2/~e i1ek2ec2eb!

1(
k,c

B

3^acuki&2/~e i1ek2ec2ea!. ~21!

Equations~17! ~and 21! include the possibility thatj
equalsi anda equalsb. The inclusion of these terms in th
first sum are needed to cancel against similar terms in
expression forE0~disp!. Such double excitations asc ia

A c0
B

→c iaia
A ckc

B do exist, and they would enter the general tre
ment of correlation, but whether these are truly dispersiv
difficult to ascertain. It seems consistent to include the te
suggested in Fig. 3, which requires considering each of
two possible determinants inc ia

A c0
B separately, interacting

them with determinants, rather than spin-states, which do
flip the spin off i or fa . Doing so, leads to, forb5a, i
Þ j ,
Downloaded 29 Jul 2002 to 143.107.133.142. Redistribution subject to A
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Eia
a5b,iÞ j~disp!5(

j

A

(
k,c

B

~4^acu jk&21^acuk j&2

24^acu jk&^acuk j&!/~e j1ek2ec2ea!

~22!

and a similar term fori 5 j , aÞb and for the termi 5 j , a
5b. These terms in the sums forEia~disp! do differ from
those inE0~disp! by exchange terms of the form neglecte
^acuk j&2, and it is not possible to eliminate them by simp
rotations of the Rumer states.20 The second, third, and fourth
sums on the right-hand side of Eq.~21! correct for the inclu-
sion of these terms in the first sum. Including these integ
for the general case is not difficult, as the integrals in th
N3 sums have already been evaluated for the CIS. Howe
we are relying on cancellations in the theorem, and h
avoided the question of instabilities caused by small deno
nators and intruder states, that regardless of how p
should cancel until we actually start adding such terms.
should also note that defining dispersion in the cases s
rated above is somewhat arbitrary. In a complete CI tre
ment, these states we have separated out would also ne
be proper spin-adapted states, rather than determinants
do not change the spin off i or fa . The correction then is
not of the form of Eq.~22!, nor could these terms be dubbe
‘‘dispersive.’’ The situation is identical to including the Bril
louin theorem violating terms in constructing the two do
blets that arise, for example, in exciting an electron from
doubly occupied orbital to a virtual orbital based on a S
ground state doublet reference. One of these three open-
doublets~at least one! requires a spin-flip of the referenc
doublet, and is, in this sense, similar to a double excitati
and therefore renders Brilloiun’s theorem invalid. Such
matrix element begins to correlate the reference, and th
excitations we do not include, by definition, as dispersive

Equations such as~20! and~21! can be obtained directly
from Møller–Plesset perturbation theory, and this has b
suggested above, and then the various terms depicted in
1 separated. This leads to the same results under the s
approximations, but the various terms that enter, sing
doubles, triples, are not as clear unless the perturbation
quence is developed diagrammatically.

Before concluding, it might be appropriate to r
emphasize that the zeroth-order Hamiltonian used in
separate calculations is different from that used in the su
molecule calculation. The perturbation is then different, a
this is what leads to the surprising result that the dispersio
included to some degree in a CIS estimate of energy dif
ences.

The overall electronic Hamiltonian is given by

H5(
i

pi
2/2m2(

i
(
C

ZC /Ri ,C

1(
i , j

1/r i j 1 (
C,D

ZCZD /RCD . ~23!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Neglecting the antisymmetrizer betweenA andB, i.e.,

C05c0
Ac0

B5u11̄¯ i ī¯ j j̄ uu¯kk̄¯u ~24!

@contrast this to Eq.~1!# suggests a Hamiltonian constructed in two pieces

H5(
i

A

pi
2/2m2(

i

A

(
C

A

ZC /Ri ,C1(
i , j

A

1/r i j 1 (
C,D

A

ZCZD /RCD1(
i

B

pi
2/2m2(

i

B

(
C

B

ZC /Ri ,C1(
i , j

B

1/r i j

1 (
C,D

B

ZCZD /RCD11/2H 2(
i

A

(
C

B

ZC /Ri ,C1(
i
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H[HA1HB1HAB1HBA

5~HA1HAB!1~HB1HBA![HA81HB8 . ~26!

The termHAB in HA8 ‘‘polarizes’’ A, andHBA in HB8 ‘‘polar-
izes’’ B, and this is included naturally in the supermolecu
SCF~which does not rely on this division!. In the supermol-
ecule calculation, the perturbation contains only the tw
electron terms treated above,

2(
i

n~ i !1(
i , j

1/r i j ,

wheren( i ) is the Fock two-electron potential for electroni.
The zeroth-order solutions can be considered SCF solut
of HA8 and HB8 . In the separate calculations, the term (HAB

1HBA) is the perturbation, and the zeroth-order solutions
SCF solutions ofHA and HB . In comparing the molecula
orbitals, we note that those obtained from the supermole
calculation can be expressed as linear combinations of th
obtained for the isolatedA system~assuming the mo’s are
localized!. Each simple configuration state function ofA in
the supermolecule could then be expressed as a linear
bination of configuration state functions over the mo’s of t
isolatedA system: that is, in terms of the isolatedA mo’s
each configuration state function~CSF! of A in the supermol-
ecule contains configuration superposition, the coefficient
which are determined by the supermolecule SCF.

We were first led to believe in the existence of such
theorem as that examined here after noting the successe
series of CIS calculations performed on a chromophore
solution. In those studies, Monte Carlo calculations w
performed to generate uncorrelated structures, and then S
CIS supermolecule calculations were performed on the c
mophore and its first solvation shell~defined through the
radial distribution function!. These results are then averag
to give peak widths and positions. Success was obta
even in systems such as benzene in benzene, in cyclohe
in carbon tetrachloride, and in water, cases in which disp
sion dominates.11

It would certainly be interesting to further examine th
theorem numerically. The comparison that should be ma
however, is between the CIS supermolecule calculation
then the CI supermolecule calculation in which the disp
Downloaded 29 Jul 2002 to 143.107.133.142. Redistribution subject to A
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sion is included explicitly for the ground and for the excite
state of the chromophore; that is, we should check the
proximate theory for dispersion the theorem suggests aga
the theory correctly implemented. The latter calculation
very difficult,9 which is why the theorem is potentially s
important, and we are presently writing the code to ma
such calculations. Such calculations were examined i
somewhat different context in Ref. 9. Dispersing the grou
state of the chromophore, say subsystemA, is a selected
CID, as discussed above, panel~i! of Fig. 1, and dispersing
the single excited states involves selected triples, panel~j! of
Fig. 1. The completeness of this straightforward treatm
can be measured by calculating the summed oscilla
strengths for excitations from the ground state ofB and from
the ground and excited states ofA. According to the
Thomas–Reiche–Kuhn sum rule21

NA5(
k

f IK
A ,

f IK
A 52/3@EK

A2EI
A#mKI

2 ,

~27!

whereNA is the number of electrons on subsystemA ~or B!,
f IK

A is the oscillator strength of the transition from stateI to K
on A, andmKI is the transition dipole between statesK andI.
This relationship holds only for a complete basis and a co
plete CI. Typically if I is the ground state,c0

Ac0
B , andA and

B are reasonably small molecules,N obtained might accoun
for 50% of the active electrons in the CI.17 If care is used in
selecting the triples, anNA can be obtained whenI 5c ia

A c0
B

similar to that obtained for the ground state, but most of
NA obtained for excitations fromc ia

A c0
B is considerably

smaller than that obtained for the ground state. Proceed
blindly evaluating the sums in the perturbation theory exp
sion, or even performing a reasonably large CI does not e
reproduce the redshift of the first excited state thatmustre-
sult from dispersion.7 If corrections are made for the missin
states ~including the continuum! by using the Thomas–
Reiche–Kuhn sum rule forA in its ground and excited states
and forB, results reasonably insensitive to the nature of
CI, or the states included in the sums, can be obtained.9 But
there is no reason to believe that this estimate of the the
properly implemented is any better than the estimate mad
the supermolecule CIS.
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