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The problems of the partial covering time (PCT) and of the random covering time (RCT) are studied
in two dimensions using Monte Carlo simulations. We find that the PCT (RCT) presents a discontinu-
ous transition at f=1 (f=0), where f is the fraction of visited sites by a random walker. An analysis of
the time evolution of the surviving unvisited clusters reveals that they exhibit a time-dependent fractal-

like structure.

PACS numbers: 05.50.+q

In the last few years the concept of random walkers
(RW) has been used in an increasing number of new and
interesting theoretical and practical problems in physics
[1], biology [2], chemistry [3], ecology [4], economics [5],
and technology [6]. RW have a large domain of applica-
bility in these disciplines mainly due to the important role
this concept plays in the subjects of polymer statistics and
critical phenomena [7], diffusion [8] and noise theory [9],
and fractals [10].

Recently a new RW problem, namely the lattice cover-
ing time problem (CT), was studied by Nemirovsky,
Coutinho-Filho, and Martin [11,12] in one through four
dimensions, from the point of view of theory and comput-
er simulations. The covering time, 7., is the mean time
for a lattice RW to visit all N(N— o) sites at least
once. Besides its intrinsic theoretical interest, the CT
problem presents interesting connections with the prob-
lems of the Grand Tour [12,13] and ergodicity [12,14].
In d=1 this problem reduces to a first visit problem and
it is exactly solved. In particular, 7.=3%N(N—1) for
periodic boundary conditions. However, for d =2 the
CT problem is not reducible to any of the well known lat-
tice RW problems. In Ref. [12] based on MC results it
was suggested that t,=ANIn*N(1+C/InN), d=2, and
te=ANInN(1+C/InN), d = 3, where A is universal, i.e.,
not dependent on boundary conditions, while C is the
magnitude of the leading scaling correction and does de-
pend on the boundary condition. In d =oo it has been
shown [11] that 4=1. More recently, Brummelhuis and
Hilhorst presented a very detailed theoretical analysis of
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a closely related problem, namely the “last-site problem.”
By identifying the characteristic time appearing in the
latter problem, to leading order in N, with ¢., they con-
firmed the above predictions for f. and found 4 =1/x,
d=2 and A=gw(0), d=3 where g»(0) [15] is a
lattice-dependent parameter for N— oo, in very good
agreement with the numerical values of the MC results
(12].

In this Letter we investigate two problems of great
practical and theoretical interest which are closely related
to the CT problem. The first one is the partial covering
time (PCT, t,) problem, in which the RW stops after
visiting a given fraction f of the N sites. The second
problem is the random covering time (RCT, ¢,) problem,
which means to calculate the mean time the RW takes to
visit a fraction f of sites previously chosen at random.
The PCT can be applied to the Monte Carlo method [16]
if one is interested in the speed at which configurations
are sampled once equilibrium has been reached. In this
case not all configurations (points in the phase space) are
to be visited, but only some fraction of them. Here we in-
vestigate these dilute covering time problems using exten-
sive Monte Carlo simulations on large lattices varying
from N =102 to 12002 sites, requiring at least 50 statisti-
cal averages per point. A finite-size scaling analysis of
the data suggests that the reduced times ¢,/ and #,/tc of
partial and random covering times display discontinuities
at f=1 and f =0, respectively. In this work we restrict
ourselves to d=2 where the effects of correlation are
strong. Expressions for t,/t. and t,/t. near the transitions
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are suggested based on theory and simulations and, in
particular, Montroll’s result [17] for the problem of one-
trap site is a special case of our expression for ¢,. More-
over, we calculate the spatial structure of the set of un-
visited sites at the time scale of ¢, and develop a complete
analysis of the fragmentation generated in these RW
problems. We find that the average number of the un-
visited sites in a time ¢ within a ball of radius R centered
in unvisited sites scales as n~R“ " ‘, in agreement with
the suggestion of Brummelhuis and Hilhorst [18] that n
has a time-dependent fractal-like structure.

A fragmentation analysis of the CT problem is impor-
tant since it reveals interesting aspects of this highly
correlated dynamics and also because the fragmentation
induced by a single RW is reminiscent of many dynamic
processes occurring in nature. As a first example we may
cite failure in brittle materials. In this case the material
fragments when cracks appear, grow, and propagate as a
result of dynamical processes, such as in rock blasting
[19]. Fragments are formed when the crack density is
sufficiently high so as to fully surround pieces of matter.
If the solid is homogeneous the first crack will propagate
unstably and lead to complete fracture [20]. So, the cov-
ering time problem presents a formal resemblance with
the fragmentation of brittle homogeneous materials if
we assume that the RW simulates the crack evolution.
The fragmentation analysis associated with the cover-
ing time can also be useful in many ecologic/epidemic/
biological problems where a group of predators or
caterpillars/disease/organism wanders in a plantation/
region, or planet/culture medium generating at the time ¢
a certain distribution n(s,t) of disconnected unvisited re-
gions or fragments of size (mass or area) s.

First we study the average fraction of unvisited sites at
time ¢, Ny, (t)/N, where N,,(¢) is defined in terms of the
distribution function n(s,t) of the preceding paragraph
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FIG. 1. Average fraction of unvisited sites, Nn, (¢)/N, at time
t, for lattices of N =5002 (0), 8002 (*), and 12002 (A) sites
(inset), and the dependence of y with NV (see text, fifth para-
graph).
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Nu() =X n(s,t)s. )

In the inset of Fig. 1 we show the dependence of
N (1)/N with t/t, for lattices of N =5002% 8002 and
12002 sites. It suggests that In[N,, (¢1)/N]1=1yt/t.. Figure
1 exhibits a plot of y versus N for lattice sizes varying
from N =4002 to N =1200% The straight line refers to
the best fit y=(0=%0.1) —(1.00+0.08) In/V, leading to
N,,l.(t)/N=N_I/I‘, first derived in Ref. [18]. As the
fraction f of visited sites at time ¢ is given by f=]
— N, (1)/N, the last expression can be solved for ¢/, giv-
ing the reduced PCT,

tp/te=—1n(1 = f)/InN , (2)

which fits very well the data of Fig. 2 for lattices of 107 to
1002 sites. It also shows that, in the thermodynamic limit
(N — o0), the reduced PC time displays a discontinuous
transition: 1,/t,— 0, for 0= <1 and #,/t.— 1, for
f=1 [take f=1—1/N in (2)1. In the CT problem the
cost of time, t., for the RW to visit all lattice sites is
mainly due to the cost to visit the small (1 —f)=(m/
N)— 0 fraction of the last unvisited sites.

Moreover, a detailed examination of the data of Fig. 2
suggests that, in the thermodynamic limit, the following
complementarity relation between the RCT and the PCT
holds:

/1) =1 =/t )y -, )

i.e., the reduced time needed to visit m =fN(N-— o)
sites previously chosen at random is equal to 1 minus the
reduced time needed to visit the complementary number
(1= f)N(N— ) of sites. It means that for N— oo,

FIG. 2. Fraction f (held fixed) of visited sites at time ¢ for
lattices of 102 (@), 202 (<), 50% (+), 70% (0), and 1002 (*)
sites. The curves on the left (right) refer to the PCT (RCT)
problem. The insets illustrate schematically the discontinuous
transitions in the thermodynamic limit.
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FIG. 3. Numerical checking of the average RCT [Eq. (5)]
on a two-dimensional lattice of 2002 sites with “m traps.”

t,/te— 1 for 0<f=<1, and t,/t.— 0 for f=0. In the
RCT problem the cost of time, ¢,, to visit any finite frac-
tion of previously selected sites is of the same order as the
cost ¢, to visit all lattice sites.

We can now work further on this analogy by assuming
that, to leading order, the counterpart of Eq. (2) for RCT
can be written in the form

*
the=1+0_ @
InN

where f* and N* are effective fraction and number of
sites to be determined by fitting the data of Fig. 2 and
satisfying other theoretical constraints. A major theoreti-
cal constraint follows by matching Eq. (4) to Montroll’s
exact result for the ‘“one-trap” problem [17]. Since
t:=ANIn’N in d=2, with 4=0.30+0.03, this match-
ing results, effective if one places f* =ef and N* =N, in
(4) to obtain

1, = [%]NlnN(l+lnm)+0(N). (5)

Notice that 4 =1/x, which confirms the suggestion of
Brummelhuis and Hilhorst [18] and in agreement with
our MC data [12]. An independent numerical checking
of Eq. (5) is shown in Fig. 3 for a lattice of 2007 sites.

From the above discussion it is clear that Eq. (5) is val-
id only for f=(m/N)— 0. For 0 < f =<1, a good fitting
of the data of Fig. 2 is obtained for f* =fand N*=N1?,
i.e., the complementarity relation (4) between the RCT
and PCT is obtained after a proper lattice scale transfor-
mation is performed in the former problem under a con-
stant fraction of sites to be visited.

In Fig. 4 we show the dependence of the average size §
of unvisited regions as a function of the reduced time ¢/1,
for large systems with 4002 to 12002 sites. This quantity
exhibits a clear power-law dependence when t/t. varies
by a factor near 102 It indicates that in the scaling

region Ing=(0.15%£0.01) —(1.20£0.05)In(z/t.). We
thus conjecture that
5=(x/e)(t/t.) ~*e) )
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FIG. 4. Average size § of unvisited regions as a function of
the reduced time ¢/t. for lattices of 4002 to 12002 sites.

Using this scaling relation and that for N,,(t)/N, we
can obtain the total number of unvisited disconnected re-
gions or fragments generated by the RW dynamics at
time ¢, defined by

F=Yn(s,t) =N, (t)/5(), @)

in the scaling form
(FIN)=@/t)*N ™", a=xle. ®

This function is plotted in Fig. 5 for a 6002 lattice. F/N
clearly exhibits a maximum at a time #;/t. =a/InN, which
can be easily found from the condition [d(F/
N)/dzl,, =0, t=(t/t;). Thus the critical exponent a
appearing in the scaling of § with ¢/t is simply the prod-
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FIG. 5. Total number of unvisited disconnected regions or
fragments (O) and the diversity of fragments (Q) as a function
of time for a lattice of 6002 sites. Full circle (square) denotes
the time of maximal number N (diversity D) of fragments.
(See text, tenth and eleventh paragraphs.) The inset shows the
scaling relation between N and D.
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uct of the reduced time tf/tc times InN. As a conse-
quence, for any given lattice there is a constant fraction
fo (=0.703), given by (1,/ty)=—(e/n)In(1 —fo) =1,
for which the PCT, Eq. (2), coincides with the time of
maximal fragmentation. For f> fo, 1, > t, for f < f,
tp <ts. Using the asymptotic expression [12] for the CT
in d=2 we argue that the time ¢, of maximal fragmenta-
tion is given by

t;=(1/e)NInN+O(N) . (9)

In Fig. 5 we also exhibit a plot of the diversity of frag-
ments as a function of ¢/t.. The diversity,

D) =X {1 = 8,00} » (10)

measures the number of different sizes of unvisited re-
gions present at time z. D(¢) has a maximum almost
coincident with that of F(z). Then, a maximum number
of length (size) scales coexist in the PCT problem at the
critical time ?¢rit = t7. In the inset of Fig. 5 we show that
the maximum of F(¢), WV, and the maximum of D(z), D,
present the simple scaling relation N ~D2*%! A care-
ful analysis of our data together with the conjecture a
=n/e suggest that the maximum number of disconnected
unvisited regions (fragments), N =F(ts), and the aver-
age (fragment) size at the same (critical) time, 5(t), as-
sume the asymptotic values

N=(n/e?)(N/InN) , an
and
5(t;)=(n/e)> "IN . (12)
Finally, we calculate the correlation function
N"V
C(R)=2 n(R;)/Npn (1), (13)

=1

on lattices of 6002 sites, for 0.15 < /1, < 0.50, where
n(r;) is the number of unvisited sites within a ball of ra-
dius R; centered at an unvisited site i. We find that
C(R)~R?, p=(1.52%£0.05)—(1.0+0.1)(¢/t.), for
R <5, see Fig. 6, the time dependence being in excellent
agreement with the prediction of Brummelhuis and
Hilhorst [18] for InR/IncN <1, ¢ = 1.85, where c is a lat-
tice parameter. The constant part of S deviates from
d =2, expected in the continuum limit, because of lattice
effects. In fact, by defining the number of sites inside the
area, A(R=1), of a ball of R=1 as the unit area, we
have, for a square lattice, the following scaling relation:
A(R)/A(1) =R*, where the exponent x varies from 1 to
=186as1=<R=S5. For R— oo, x—d=2.

From the conceptual point of view this Letter deals
with very interesting phenomena, such as the discontinu-
ous transitions for the PCT at f=1 and the RCT at f=0
as well as the time dependence of the fractal-like struc-
ture observed for the surviving unvisited clusters at the
time scale of z.. Besides representing a basic problem in
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FIG. 6. Time-dependent exponent f associated with the
correlation function [Eq. (13)] between unvisited sites.

RW statistics on its own, the subject of this Letter has
direct or indirect implication in a number of problems in
physics, biology, and technology.
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