next up previous
Next: About this document ...

Chapter 1 - Answers to selected exercises


1. Obtain the probability of adding up six points if we toss three distinct dice. $ P=10/36.\bigskip $ 2. Consider a binomial distribution for a one-dimensional random walk, with $ N=6$, $ p=2/3$, and $ q=1-p=1/3$. a. Draw a graph of $ P_{N}(N_{1})$ versus $ N_{1}/N$. b. Use the values of $ \left\langle N_{1}\right\rangle $ and $ \left\langle
N_{1}^{2}\right\rangle $ to obtain the corresponding Gaussian distribution, $ p_{G}(N_{1})$. Draw a graph of $ p_{G}(N_{1})$ versus $ N_{1}/N$ to compare with the previous result. c. Repeat items (a) and (b) for $ N=12$ and $ N=36$. Are the new answers too different?


3. Obtain an expression for the third moment of a binomial distribution. What is the behavior of this moment for large $ N$? $ \left\langle \left( \Delta N_{1}\right) ^{3}\right\rangle =Npq\left(
q-p\right) .\bigskip $ 4. Consider an event of probability $ p$. The probability of $ n$ occurrences of this event out of $ N$ trials is given by the binomial distribution $ ^{{}}$

$\displaystyle W_{N}(n)=\frac{N!}{n!(N-n)!}p^{n}(1-p)^{N-n}.$    

If $ p$ is small ($ p<<1$), $ W_{N}(n)$ is very small, except for $ n<<N$. In this limit, show that we obtain the Poisson distribution,

$\displaystyle W_{N}(n)\rightarrow P\left( n\right) =\frac{\lambda ^{n}}{n!}\exp \left(
 -\lambda \right) ,$    

where $ \lambda =np$ is the mean number of events. Check that $ P\left(
n\right) $ is normalized. Calculate $ \left\langle n\right\rangle $ and $ \left\langle \left( \Delta n\right) ^{2}\right\rangle $ for this Poisson distribution. Formulate a statistical problem to be solved in terms of this distribution. Note that $ \left( 1-p\right) ^{n}=\exp \left[ -pN+...\right] $, and $ N!/\left(
N-n\right) !=\exp \left[ n\ln N+...\right] $, for $ p<<1$ and $ n<<N$. Also,we have

$\displaystyle \sum\limits_{n}\frac{\lambda ^{n}}{n!}=\exp \left( \lambda \right) .$    

Therefore, $ \left\langle n\right\rangle =\lambda $ and $ \left\langle \left(
\Delta n\right) ^{2}\right\rangle =\lambda .\bigskip $ 5. Consider an experiment with $ N$ equally likely outcomes, involving two events $ A$ and $ B$. Let $ N_{1}$ be the number of events in which $ A$ occurs, but not $ B$; $ N_{2}$ be the number of events in which $ B$ occurs, but not $ A$ ; $ N_{3}$ be the number of events in which both $ A$ and $ B$ occur; and $ N_{4} $ be the number of events in which neither $ A$ nor $ B$ occur. (a) Check that $ N_{1}+N_{2}+N_{3}+N_{4}=N$. (b) Check that

$\displaystyle P\left( A\right) =\frac{N_{1}+N_{3}}{N}$ and $\displaystyle P\left( B\right) =\frac{
 N_{2}+N_{3}}{N},$    

where $ P\left( A\right) $ and $ P\left( B\right) $ are the probabilities of occurrence of $ A$ and $ B$, respectively. (c) Calculate the probability $ P\left( A+B\right) $ of occurrence of either $ A$ or $ B$. (d) Calculate the probability $ P\left( AB\right) $ of occurrence of both $ A$ and $ B$. (e) Calculate the conditional probability $ P\left( A\mid B\right) $ that $ A$ occurs given that $ B$ occurs. (f) Calculate the conditional probability $ P\left( B\mid A\right) $ that $ B$ occurs given that $ A$ occurs. (g)Show that

$\displaystyle P\left( A+B\right) =P\left( A\right) +P\left( B\right) -P\left( AB\right)$    

and

$\displaystyle P\left( AB\right) =P\left( B\right) P\left( A\mid B\right) =P\left( A\right)
 P\left( B\mid A\right) .$    

(h) Considering a third event $ C$, show that

$\displaystyle \frac{P\left( B\mid A\right) }{P\left( C\mid A\right) }=\frac{P\l...
...) }{P\left( C\right) }\frac{P\left( A\mid B\right) }{P\left( A\mid
 C\right) },$    

which is an expression of Bayes' theorem.


6. A random variable $ x$ is associated with the probability density

$\displaystyle p\left( x\right) =\exp \left( -x\right) ,$    

for $ 0<x<\infty $. (a) Find the mean value $ \left\langle x\right\rangle $. (b) Two values $ x_{1}$ and $ x_{2}$ are chosen independently. Find $ \left\langle x_{1}+x_{2}\right\rangle $ and $ \left\langle
x_{1}x_{2}\right\rangle $. (c) What is the probability distribution of the random variable $ y=x_{1}+x_{2}$? (a) $ \left\langle x\right\rangle =1$; (b) $ \left\langle
x_{1}+x_{2}\right\rangle =2$ and $ \left\langle x_{1}x_{2}\right\rangle =1$; (c) Note that

$\displaystyle p\left( y\right) =\int \int dx_{1}dx_{2}p\left( x_{1}\right) p\left(
 x_{2}\right) \delta \left( y-x_{1}-x_{2}\right) =y\exp \left( -y\right) .$    

To obtain this result, it is enough to use an ntegral representation of the $ \delta $-function (see Appendix) and perform the integrations.


7. Consider a random walk in one dimension. After $ N$ steps from the origin, the position is given by $ x=\sum_{j=1}^{N}s_{j}$, where $ \left\{
s_{j}\right\} $ is a set of independent, identically distributed, random variables, given by the probability distribution

$\displaystyle w(s)=\left( 2\pi \sigma ^{2}\right) ^{-1/2}\exp \left[ -\frac{\left(
 s-l\right) ^{2}}{2\sigma ^{2}}\right] ,$    

where $ \sigma $ and $ l$ are positive constants. After $ N$ steps, what is the average displacement from the origin? What is the standard deviation of the random variable $ x$? In the large $ N$ limit, what is the form of the Gaussian distribution associated with this problem? $ \left\langle x\right\rangle =Nl$; $ \left\langle \left( x-\left\langle
x\right\rangle \right) ^{2}\right\rangle =n\sigma ^{2}$;

$\displaystyle p_{G}\left( x\right) =\left( 2\pi N\sigma ^{2}\right) ^{-1/2}\exp \left[ -
 \frac{\left( x-Nl\right) ^{2}}{2N\sigma ^{2}}\right] .$    


8. Consider again problem 7, with a distribution $ w\left( s\right) $ of the Lorentzian form

$\displaystyle w(s)=\frac{1}{\pi }\frac{a}{s^{2}+a^{2}},$    

with $ a>0$. Obtain an expression for the probability distribution associated with the random variable $ x$. Is it possible to write a Gaussian approximation for large $ N$? Why? Now we should be careful, as $ \left\langle s\right\rangle =0$, but $ \left\langle s^{2}\right\rangle $ diverges! The Lorentzian form does not obey the conditions of validity of the central limit theorem.


next up previous
Next: About this document ...
Jairo da Silva 2001-03-12