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Abstract – In the light of results obtained during the last two decades in a number of
laboratories, it appears that some of the tools of nonlinear dynamics, first developed and
improved for the physical sciences and engineering, are well-suited for studies of
biological phenomena. In particular it has become clear that the different regimes of
activities undergone by nerve cells, neural assemblies and behavioural patterns, the
linkage between them, and their modifications over time, cannot be fully understood in
the context of even integrative physiology, without using these new techniques. This
report, which is the first of two related papers, is aimed at introducing the non expert to
the fundamental aspects of nonlinear dynamics, the most spectacular aspect of which is
chaos theory. After a general history and definition of chaos the principles of analysis of
time series in phase space and the general properties of chaotic trajectories will be
described as will be the classical measures which allow a process to be classified as
chaotic in ideal systems and models. We will then proceed to show how these methods
need to be adapted for handling experimental time series; the dangers and pitfalls faced
when dealing with non stationary and often noisy data will be stressed, and specific
criteria for suspecting determinism in neuronal cells and/or assemblies will be described.
We will finally address two fundamental questions, namely i) whether and how can one
distinguish, deterministic patterns from stochastic ones, and, ii) what is the advantage of
chaos over randomness: we will explain why and how the former can be controlled
whereas, notoriously, the latter cannot be tamed. In the second paper of the series, results
obtained at the level of single cells and their membrane conductances in real neuronal
networks and in the study of higher brain functions, will be critically reviewed. It will be
shown that the tools of nonlinear dynamics can be irreplaceable for revealing hidden
mechanisms subserving, for example, neuronal synchronization and periodic oscilla-
tions. The benefits for the brain of adopting chaotic regimes with their wide range of
potential behaviours and their aptitude to quickly react to changing conditions will also
be considered. © 2001 Académie des sciences/Éditions scientifiques et médicales
Elsevier SAS
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1. Introduction

Many biologists, including neuroscientists, believe that
living systems such as the brain, can be understood by
application of a reductionist approach. There are strong

grounds for this conviction: reductionism has been tre-
mendously successful in recent decades in all fields of
science particularly for dissecting various parts of physical
or biological systems, including at the molecular level. But
despite the identification of ionic channels and the char
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acterization of their responses to voltage, a phenomenon
like, for instance, the action potential only makes sense in
terms of an ‘integrated’ point of view, thus the need of
Hodgkin–Huxley model to understand its generation.
Indeed, complex systems can give rise to collective behav-
iours, which are not simply the sum of their individual
components and involve huge conglomerations of related
units constantly interacting with their environment: the
way in which this happens is still a mystery. Understand-
ing the emergence of ordered behaviour of spatio-temporal
patterns and adaptive functions appears to require addi-
tional, and more global, concepts and tools.

A somewhat related and commonly accepted viewpoint
is that the strength of science lies in its ability to trace
causal relations and so to predict future events. The goal of
scientific endeavor would be to attain long-term predict-
ability and this is perhaps “the founding myth of classical
science” [1]. This credo is rooted in Newtonian physics:
once the laws of gravity were known, it became possible
to anticipate accurately eclipses thousand years in
advance. Otherwise stated, the Laplacian dogma accord-
ing to which randomness is only a measure of our “igno-
rance of the different causes involved in the production of
events....” [2] dominates the implicit philosophy of today’s
neuroscience. Conflicting with this view is the evidence
that, for example, some basic mechanisms of the transmis-
sion of information between neurons appear to be largely
governed by chance (references in [3, 4]).

For a long time it was thought that the fate of a deter-
ministic system is predictable and these designations were
two names for the same thing. This equivalence arose from
a mathematical truth: deterministic systems are specified
by differential equations that make no reference to chance
and follow a unique trajectory. Poincaré was the first to
show the limits of this faith: with a few words he became
the forerunner of a complete epistemological revolution
“... it may happen that small differences in the initial
conditions produce very great ones in the final phenom-
ena. A small error in the former will produce an enormous
error in the latter. Prediction becomes impossible, and we
have the fortuitous phenomenon.” [5].

Systems behaving in this manner are now called ‘cha-
otic’. They are essentially nonlinear meaning that initial
errors in measurements do not remain constant, rather
they grow and decay nonlinearly (in this case exponen-
tially) with time. Since prediction becomes impossible,
these systems can at first glance appear to be stochastic but
this randomness is only apparent because the origin of
their irregularities is different: they are intrinsic, rather than
due to external influences. Thus, as stated by Vidal, chaos
theory “is the challenge to the meaning and to the scope of
the ideas of determinism and chance, as we are accus-
tomed to practice them today” and a revision of our
definitions is now imperative [6].

The relevance of these considerations to brain functions
and neurosciences may not at first be clear. To take an
example, a train of action potentials was simulated
(figure 1A), using a system of differential equations. First

described by Hindmarsh and Rose [7] this pattern would
be interpreted as random on the basis of classical statisti-
cal methods analysing interval distributions suggesting
exponential probability densities (figure 1B); however, a
different representation of the interspike intervals (figure
1C) reveals a well ordered underlying generating mecha-
nism. More generally, observation of exponential prob-
ability density functions is not sufficient to identify a
process as conforming to a Poisson distribution [8] and the
same remark applies to other forms of distributions.

The essentials of the discovery of chaos can be traced
back to the turn of the last century in the mathematical
work of three French mathematicians (see [9]). Hadamard
and Duhem were interested in the movement of a ball on

Figure 1. Noise versus ordered time series. (A) Computer generated
train of action potentials produced by the Hindmarsh and Rose model
(1984). At first sight this sequence looks random. (B) Probability
density function of time intervals between spikes with an almost
exponential decay suggesting independence between the successive
spikes. (C) Each interval In (axis) is plotted against the next one In+1

(ordinates), indicating a strict relationship between them. This pattern
reveals that the sequence in (A) is produced by a deterministic
process (Faure and Korn, unpublished).
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a negatively curved surface and on the failure to predict its
trajectory due to the lack of knowledge of its initial con-
dition. Poincaré tried to solve the so-called three body
problem. He found that even though the movement of
three celestial bodies is governed by the laws of motion
and is therefore deterministic, their behaviour, influenced
by gravity, could be so complex as to defy complete
understanding. The nonlinearity is brought about in this
case by the inverse law of gravitational attraction.

Present part I of this series of reviews describes chaos
and the main methods and theoretical concepts now
available for studying nonlinear time series with a focus on
the most relevant to biological data. In part II (in prepara-
tion), we will show that despite the failure of earlier
attempts to demonstrate chaos in the brain convincingly,
data are now available which are compatible with the
notion that nonlinear dynamics is common in the central
nervous system.

This leads to the question: then what? We will show that
such studies can bring new insights into brain functions,
and furthermore that nonlinear dynamics may allow neu-
ral networks to be controlled, using very small perturba-
tions, for therapeutic purposes.

2. Introduction to chaos theory

2.1. What is chaos?

Contrary to its common usage, the mathematical sense
of the word chaos does not mean disorder or confusion. It
designates a specific class of dynamical behaviour. In the
past two types of dynamics were considered, growth or
decay towards a fixed point and periodic oscillations.
Chaotic behaviour is more complex and it was first
observed in abstract mathematical models. Despite its
‘banality’ [6] it was not discovered until the advent of
modern digital computing: nonlinear differential equa-
tions for which there are no analytical solutions and, as
importantly, no easy way to draw comprehensive pictures
of their trajectories, could then be solved.

Among many investigators, pioneers that paved the way
of modern theory of chaos were the meteorologist E.
Lorenz [10] who modeled atmospheric convection in
terms of three differential equations and described their
extreme sensitivity to the starting values used for their
calculations, and the ethologist R. May [11, 12] who
showed that even simple systems (in this case interacting
populations) could display very “complicated and disor-
dered” behaviour. Others were D. Ruelle and F. Takens
[13, 14] who related the still mysterious turbulence of
fluids to chaos and were the first to use the name ‘strange
attractors’. Soon thereafter M. Feigenbaum [15] revealed
patterns in chaotic behaviour by showing how the qua-
dratic map switches from one state to another via period
doubling (see definition in section 2.3). The term ‘chaos’
had been already introduced by T.-Y. Li and J. Yorke [16]
during their analysis of the same map (these concepts are
further described below).

This account is the Western version, but it is far from
being complete. Fairness prompts other names to be added
to the above, those of Russian scientists who exploited
Poincaré’s legacy long before others. Their school laid the
foundations of the modern theory of dynamical systems
and of ‘nonlinear mechanics’, the most publicized aspect
of which is chaos. A detailed description of their efforts
and successes, for example those in the fields of nonlinear
physics and vibrations, of self maintained oscillations, of
bifurcation theory, and of the relations between statistical
mechanics and dynamical systems can be found in [17].
The author describes the contributions of A. Kolmogorov,
Y.G. Sinai and their collaborators in the characterization of
chaos and of its relations with probabilistic laws and
information theory.

There is no simple powerful and comprehensive theory
of chaotic phenomena, but rather a cluster of theoretical
models, mathematical tools and experimental techniques.
According to Kellert [18], chaos theory is “the qualitative
study of unstable aperiodic behaviour in deterministic
dynamical systems”. Rapp [19], who also acknowledges
the lack of a general definition of chaotic systems consid-
ers, however, that they share three essential properties.
First, they are dramatically sensitive to initial conditions,
as shown in figure 2. Second, they can display a highly
disordered behaviour; and third, despite this last feature,
they are deterministic, that is they obey some laws that
completely describe their motion. A more complete
description, although in large parts similar, has been given
by Kaplan and Glass [20] who define chaos as “aperiodic

Figure 2. Sensitivity to initial conditions. Two initially close trajecto-
ries of a billiard ball (thick and dashed lines, respectively) quickly
diverge, although they hit the same convex obstacles along their way
(see also figure 1of [9]).
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bounded dynamics in a deterministic system with sensi-
tive dependance on initial conditions”. The additional
word aperiodic reinforces the point that the same state is
never repeated twice.

More generally, chaos theory is a specialized applica-
tion of dynamical system theory. Nonlinear terms in the
equations of these systems can involve algebraic or other
more complicated functions and variables and these terms
may have a physical counterpart, such as forces of inertia
that damp oscillations of a pendulum, viscosity of a fluid,
nonlinear electronic circuits or the limits of growth of
biological populations, to name a few. Since this nonlin-
earity renders a closed-form of the equations impossible,
investigations of chaotic phenomena seek qualitative
rather than quantitative accounts of the behaviour of non-
linear differentiable dynamical systems. They do not try to
find a formula that will make exact numerical predictions
of a future state from the present state. Instead, they use
other techniques to “provide some idea about the long-
term behaviour of the solutions” [21].

Constructing a ‘state space’ is commonly the first and
obligatory step for characterizing the behaviour of systems
and their variations in time. This approach began with the
work of Poincaré. Current research in this field goes by the
name ‘dynamical systems theory’, and it typically asks
such questions as what characteristics will all the solutions
of this system ultimately exhibit? We will first give the
general principles of this theory as they have been devel-

oped from studies of mathematical objects (models) before
considering in detail how they apply to biological data.

2.2. Phase space, strange attractors and Poincaré sections

The phase space (a synonymous term is state space) is a
mathematical and abstract construct, with orthogonal coor-
dinate directions representing each of the variables needed
to specify the instantaneous state of a system such as
velocity and position (figure 3A). Plotting the numerical
values of all the variables at a given time provides a
description of the state of the system at that time. Its
dynamics, or evolution, is indicated by tracing a path, or
trajectory, in that same space (figure 3B). A remarkable
feature of the phase space is its ability to represent a
complex behaviour in a geometric and therefore compre-
hensible form.

A classical example, and the simplest, is that of the
pendulum. Its motion is determined by two variables,
position and velocity. In this case the phase space is a
plane, and the state is a point whose coordinates are these
variables at a given time, t. As the pendulum swings back
and forth the state moves along a path, or orbit. If the
pendulum moves with friction (as does a dissipative sys-
tem), it is damped and finally comes to a halt. That is, it
approaches a fixed point, that attracts the closest orbits
(figure 3C1). This point is an attractor (the term attractor
refers to a geometrical configuration in a phase space to
which all nearby trajectories tend to converge over time).

Figure 3. Several predictable attractors in their phase spaces. (A) Dynamical system with three interconnected variables. (B) Representation of the
trajectory of the system shown in A, in a three dimensional phase space defined by the variables x, y and z. (C1-C3) Two dimensional phase spaces.
(C1) The simplest attractor is a fixed point; after a few oscillations (dashed lines) a pendulum subjected to friction always settles in the same position
of rest, indicated by a dot. (C2) A limit cycle that describes stable oscillations forms a close loop in the state space. The same state is reached
whatever the departure point of the trajectory. (C3) Quasi periodic behaviour resulting from the motion of two systems that oscillate at frequency
f1 and f2, respectively, and conforming to a torus.
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In absence of friction, or if the latter is compensated by a
weight or another force, the pendulum behaves like a
clock that repeats the same motion continuously. This type
of motion corresponds to a cycle, or periodic orbit, and the
corresponding attractor is called a limit cycle (figure 3C2).
Many biological systems, for instance the heart and numer-
ous neuronal cells, behave as such oscillators.

Another and a more complicated type of attractor is the
two dimensional torus which resembles the surface of a
tire. It describes the motion of two independent oscillators
with frequencies that are not related by integers
(figure 3C3). In some conditions the motion of such a
system is said to be quasi periodic because it never repeats
exactly itself. Rhythms that can be considered as quasi

Figure 4. Lack of long-term predictability of the Lorentz attractor. (A) The two curves (thick and thin lines) start at initial locations that differ by only
0.0001. Note their random appearance and rapid divergence. (B) Effects of inaccuracy of measurements: 10 000 trajectories start in the same region
(arrow, to the left). At the indicated time, they can be found anywhere on the attractor (thin dotted lines) and in regions progressively more distant
from each other. Prediction quickly becomes impossible.
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periodic are found, for example in cardiac arrhythmias,
because pacemakers which are no longer coupled to each
other independently maintain their own rhythm [20].

Fixed points, limit cycles and tori were the only known
(and predictable on a long-term) attractors until Lorenz
[10] discovered a new system that displays completely
different dynamics. In his attempts to forecast the weather,
he developed a simple model to describe the interrelations
of temperature variation and convector motion. The model
involves only three differential equations:

�
dx/dt = − σx + σy

dy/dt = − xz + rx − y

dz/dt = xy − bz

(1)

where σ, r, and b are parameters that characterize the
properties of a fluid and of the thermal and geometric
configuration of the system. The variable x is related to the
fluid’s flow, y is proportional to the temperature difference
between the upward and downward moving parts of a
convection roll, and z describes the nonlinearity in tem-
perature difference along the roll. The numerical solution
of these equations with parameter values σ = 10, r = 28,
and b = 8/3 leads to an attractor which can be visualized
in a three-dimensional space with coordinates (x, y, z)
since the system has three degrees of freedom. Because of
its complexity, this geometric pattern, which looks like a
butterfly, is the most popular ‘strange attractor’ (figure 4).
Numerous sets of equations leading to strange attractors,
also shown to be chaotic, have now been described in the
literature (Rossler, Hénon, Ikeda attractors, etc). In all
cases, the systems are deterministic: the corresponding
trajectories are confined to a region of the phase space
with a specific shape. Their trajectory rotates about one or
two unstable fixed points (as defined below) and eventu-
ally escapes to orbit another unstable fixed point which is
not an attractor. This process is repeated indefinitely, but
the orbits of the trajectory never intersect each other.

The solutions of the above model illustrate the main
features of chaos. In a simple time series, it looks random
(figure 4A). The trajectories rapidly diverge even when
they have close starting points. In the 3D phase space, they
mimic both the aperiodicity and sensitive dependence on
initial conditions (figure 4B). In a purely linear system, any
exponential growth would cause the system to head off to
infinity (to explode), but the nonlinearity folds the growth
back. Conversely the exponential decay in a linear system
would lead to a steady-state behaviour: the trajectories
would converge to a single point. But given that in non-
linear systems there can be exponential growth in some
directions, the effect of the exponential decay in other
directions is to force the trajectories into a restricted region
of the phase space. So nearby trajectories tend to separate
from one another all the while being kept on the attractor.

Analysing pictures of strange attractors and their com-
plicated paths can prove a complicated matter. Fortu-
nately, three dimensional phase spaces may be simplified
using a Poincaré section or return map, which is obtained

by taking a simple slice of the attractor (figure 5), thus
resulting in a return map. Reducing the phase space dimen-
sion in this manner corresponds to sampling the system
every time the trajectory hits the plane of the section. This
procedure, which simplifies the flow without altering its
essential properties, is particularly useful for the studies of
biological data, especially of time series obtained during
studies of the nervous system (see below). It is also valu-
able for dealing with high dimensional systems (i.e. more
than about 5).

2.3. From order to chaos: period doubling

Physical systems (as well as modeled data) can undergo
transitions between various dynamics as some of their
basic parameters are varied. In general a small change in a
parameter results in a slight modification of the observed
dynamics, except for priviledged values which produce
qualitative alterations in the behaviour. For example, con-
sider a creek in which water flows around a large rock, and
a device to measure velocity. If the flow is steady, the
velocity is constant, thus a fixed point in the state space. As
the speed of water increases, modulations of water around
the rock cause the formation of swirls, with an increase,
and then a decrease in the velocity of each swirl. The
behaviour changes from constant to periodic, having a
limit cycle in the same phase space. If speed is further
increased the motion of water may become quasi peri-
odic, and ultimately random turbulences take the form of
chaos (see [9]). Such dramatic matic changes of behaviour
are called bifurcations and in a phase space, they occur at
what are referred to as bifurcation points that serve as
landmarks when studying a dynamical system.

The best studied model of bifurcations is that of the
logistic equation which is a first order difference equation
that takes the simple form

xn + 1 = kxn� 1 − xn � (2)

Figure 5. Poincaré section. The section of a three dimensional phase
space is a two dimensional surface (which is placed here in the x, z
plane). Crossing points 1, 2, 3 are recorded every time the trajectory
hits this section, resulting in a “strobscopic” portrait of the attractor.
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where k is a control parameter. For example consider the
specific case where k = 0.2 and x0 = 3. Then equation (2)
yields x1 = 0.2(0.3)(1 – 0.3) = 0.63. Using this value of x1,
x2 can be computed in the same way, by a process called
iteration, and so on.

The logistic ‘map’ (figure 6A) was used by May in his
famous investigations of the fluctuations of ‘populations’,
which breed and later die off en masse (nonoverlapping
generations). The size of a generation is bound by envi-
ronmental conditions (including food supply and living
space), fertility, and interactions with other species. A
number between 0 and 1 indicates this size, which is
measured as the actual number of individuals in the spe-
cies: 0 represents total extinction and 1 is the largest
possible number in a generation. The term k determines
the fate of a population of say, insects: the higher k is, the
more rapidly a small population grows or a large one
becomes extinct. For low values of k, the initial population
settles down to a stable size that will reproduce itself each
year. As k increases the first unstable fixed point appears.
The successive values of x oscillate in a two-year cycle: a
large number of individuals produces a smaller popula-

tion, which in turn reproduces the original large number of
individuals the following year. For increasing values of k a
cycle repeats every 4 years, 8 years, then every 16, 32, and
so on, in what is called a ‘period-doubling cascade’,
culminating into a behaviour that becomes finally chaotic,
i.e. apparently indistinguishable visually from a random
process: at this stage “wild fluctuations very effectively
mask the simplicity of the underlying rule” [22].

Another way to explain the graph of figure 6 is as
follows. In a finite difference equation such as a quadratic,
and once an initial condition x0 is chosen, the subsequent
values of x can be computed, i.e. x1 and from thereon x2,
x3, ..., by iteration. This process can be graphical or
numerical [23, 8]. Successive steps, show for example
[20] (figure 6B), that:

– for 3.000 < k < 3.4495, there is a stable cycle of period
2;
– for 3.4495 < k < 3.5441, there is a stable cycle of period
4;
– for 3.5441 < k < 3.5644, there is a stable cycle of
period 8, etc...

Figure 6. The logistic map. (A) Computer generated diagram of the behaviour of the logistic function xn+1 = kxn(1 – xn), with its branching tree
(three bifurcation points labelled k1, k2 and k3 are indicated by vertical dotted lines). Chaos, with dots apparently dispersed at random, occurs at
the right hand side of the bifurcation point k = 3.569... (arrow). Magnifying the map in this region would reveal further chaotic vertical stripes, and
close-up images would look like duplicates of the whole diagram. (B) Examples of different asymptotic regimes obtained for the indicated values
of k (thick bars in A, see text for explanations).
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(A stable cycle of period 2, 4, 8, ... is a cycle that
alternates between 2, 4, 8, ... values of x).

The emergence on the map of a new stable cycle
coincides with the transformation of the previous cycle
into an unstable one (for example cycle 2 in figure 7A).
This process is illustrated in figure 7B1-B2 which shows
how two different values of the control parameter k modify
the local dynamics of the period 1 stable fixed point into a
period 1 but unstable, fixed point. As k increases, this
process is repeated until the chaotic state, which is made
of an infinite number of unstable cycles, is reached.

The period-doubling bifurcations that characterize logis-
tic maps obey various beautiful scaling relations. The
values of the parameter k that which each successive
bifurcation appears grow closer and closer together
(figure 6A, vertical dotted lines). That is, successive bifur-
cation points are always found at a given value of k and
chaos appears for k = 3.569.... Furthermore, if the value at
which a cycle occurs is x then the ratio (kx – kx–1)/kx+1 is
δ = 4.669... This is Feigenbaum’s magic universal con-
stant [15].

2.4. Other roads to chaos

Among the other roads to chaos two deserve special
notice. One is via quasiperiodicity, when a torus becomes
a strange attractor. The other route is that of ‘intermittency’
which means that a periodic signal is interrupted by ran-
dom bursts occurring unpredictably but with increasing
frequency as a parameter is modified. Several types of
intermittencies has been observed in models, and the type
depends on whether the system switches back and forth
from periodic to chaotic or quasiperiodic behaviour [24];
for theoretical considerations see also [6]. In return (or
Poincaré) maps the beginning of intermittencies has been
reported at ‘tangent bifurcations’ of graphical iterations
(not shown). Although we have not studied them exten-
sively, we have detected similar sequences between the
intervals of action potentials recorded from bursting inter-
neurons presynaptic to the Mauthner cells of teleosts.

A wide variety of self organized systems called ‘com-
plex’, and best described by a power law [25], have a
noisy behaviour. The noise level increases as the power
spectrum frequency decreases with a 1/f frequency depen

Figure 7. The road to chaos. (A) Illustration of the period doubling scenario showing that stable fixed points (solid lines), although they continue
to exist, become unstable (dashed line) when iterations are pushed away from bifurcation points. (B1-B2) Graphical iterations at indicated values
of the control parameter k (arrows in A). (B1) Representation of the logistic function xn+1 = 2.8xn(1 – xn) (thick line) and of the corresponding fixed
point (empty circle) at the intersection with the diagonal of the return map. Successive iterates converge toward this stable fixed point. (B2) Same
representation as in B1 with k = 3.3; the fixed point is now unstable and iterates diverge away from it. (Note that B1 and B2 have same starting
points).
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dence. Although such complex systems are beyond the
scope of this review, it is worth noting that intermittency
may be one of the mechanisms underlying the 1/f noise
found in natural systems [24, 26].

2.5. Quantification of chaos

Several methods and measures are available to recog-
nize and characterize chaotic systems. Despite the sensi-
tivity of these systems to initial conditions and the rapid
divergence of their trajectories in the phase space, some of
these measures are ‘invariant’, meaning that their results
do not depend on the trajectory’s starting point on the
attractor, nor do they depend on the units used to define
the phase space coordinates. These invariants are based
on the assumption that strange attractors fulfill the condi-
tions satisfying the ‘ergodic’ hypothesis which posits that
trajectories spend comparable amounts of time visiting the
same regions near the attractor [27]. Three major invari-
ants will now be considered.

2.5.1. The Lyapunov exponent

It is a measure of exponential divergence of nearby
trajectories or, otherwise stated, of the difference between
a given trajectory and the path it would have followed in
the absence of perturbation (figure 8A). Assuming two
points x1 and x2 initially separated from each other by a
small distance δ0, and at time t by distance δt, then the
Lyapunov exponent, λ, is determined by the relation

δx� t � = δx� 0 � eλt (3)

where λ is positive if the motion is chaotic and equal to
zero if the two trajectories are separated by a constant
amount as for example if they are periodic.

2.5.2. Entropy

A chaotic system can be considered as a source of
information in the following sense. It makes prediction
uncertain due to the sensitive dependence on initial con-
ditions. Any imprecision in our knowledge of the state is
magnified as time goes by. A measurement made at a later
time provides additional information about the initial state.

Entropy is a thermodynamic quantity describing the
amount of disorder in a system [28], and it provides an
important approach to time series analysis which can be
regarded as a source of information [29]. From a micro-
scopic point of view, the second law of thermodynamics
tells us that a system tends to evolve toward the set of
conditions that has the largest number of accessible states
compatible with the macroscopic conditions [24]. In a
phase space, the entropy of a system can then be written

H = − �
i = 1

N

pi log pi (4)

where pi is the probability that the system is in state i. In
practice one has to divide the region containing the attrac-

tor in N cells and calculate the relative frequency (or
probability p) with which the system visits each cell
(figure 8B).

In dynamics, an important form of this measure is the
Kolmogorov–Sinai entropy (K) which describes the rate of
change of the entropy as the system evolves (for details see
[29]). Kn takes into account the entire evolution of the

Figure 8. Principles underlying the main measures of chaotic invari-
ants. (A) Lyapunov exponents. A small difference δx(0) in the initial
point x of a trajectory results in a change δx(t) which is an exponential
function δx(0)eλt (see equation 4) where λ is the Lyapunov exponent.
(B) Entropy. The phase space is divided into N cells and the location
of all the points that were initially grouped in one cell (empty circles)
is determined at a given time, t (thick dots). (C) Fractal dimension. A
Cantor Set is constructed by removing at each successive step the
central third of the remaining lines. At the stage m, there are 2M

segments of length (1/3)M each.
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initial system after n time units rather than concentrating
on a few trajectories, such that

Kn = 1
τ� Hn + 1 − Hn � (5)

where τ is the time unit.
If the system is periodic, Kn equals zero whereas it

increases without interruption, or it increases to a constant
value, depending whether the system is stochastic or
chaotic (see figure 12C).

2.5.3. Dimension

The two above described invariants focus on the dynam-
ics (evolution in time) of trajectories in the phase space. In
contrast, dimension emphasizes the geometric features of
attractors.

Since Descartes, the dimension of a space has been
thought of in terms of the number of coordinates needed to
locate a point in that space. Describing the location of a
point on a line requires one number, on a plane two
numbers, and in our familiar 3-dimensional surroundings
it requires three numbers. A modern perspective general-
izes the idea of dimension in terms of scaling laws. For
example, the amount of space enclosed by a circle given
by the familiar formula πr2. Its numerical value depends
on the units with which r is measured. A circle of radius 1
m encloses area π when measured in metres, 104π when
measured in centimetres, and area 1012π when measured
in microns. In the expressions πr2, the dimension can be
read off as the exponent on r or as the slope of a log–log
plot of the area versus the length scale.

Defining dimension in such manner provides a way to
specify a new class of geometrical object called fractal, the
dimension of which is non integer.

A simple self-similar shape is the Cantor set (figure 8C).
It is constructed in successive steps, starting with a line
segment of length 1. This length can be covered by a ‘box’
of side e. For the first stage of construction, one deletes the
middle third of that segment. This leaves two segments,
each of length 1/3. For the second stage, the middle third
of each of those segments is deleted, resulting in four
segments, each of length 1/9. Increasing the depth of
recursion, and for the Mth step, one removes the middle
third of each of the remaining segments to produce 2M

segments, each of length (1/3)M. Continuing as M → ∞,
the size e of each enclosing box → 0.

One can then calculate the box-counting dimension of
this set keeping in mind that as M → ∞, there remains only
a series of points. Then if N(e) is the number of boxes of
length e which covers entirely the set (or the attractor), the
fractal dimension that cannot be integer, becomes:

D = lim
e → 0

log� 1
N� e ��

log � e �
(6)

Strange attractors are fractal objects and their geometry is
invariant against changes in scale, or size. They are copies
of themselves [30, 26].

3. Detecting chaos in experimental data

The preceding section examined ‘ideal’ dynamical phe-
nomena produced by computer models and defined by
known mathematical equations. These models generate
pure low dimensional chaos which is, however, only
found rarely in the natural world. Furthermore when deal-
ing with natural phenomena, a ‘reverse’ approach is
required: the dynamics need to be determined starting
from a sequence of measurements and, whenever pos-
sible, the type of appropriate equations have to be identi-
fied to model the system. Most often this proves to be a
very difficult task.

The nonlinear methods described above are generally
of limited help when dealing with experimental time series
due to the lack of stationarity of the recorded signals,
meaning that all the parameters of a system, particularly of
a biological one, rarely remain with a constant mean and
variance during the measurement period. This creates an
inherent conflict between this non stationarity and the
need for prolonged and stable periods of observation for
reaching reliable and unambiguous conclusions.

A second problem is that in contrast to computer out-
puts, pure determinism and low dimensional chaos (which
can be modeled with a small number of variables,
i.e. < 4–5) are unlikely in real world systems. Natural
systems interact with their surroundings so that there is
generally a mixture of fluctuations (or noise): those pro-
duced by the environment, those by the systems them-
selves and those by the recording techniques. Thus special
and sophisticated procedures are needed to distinguish, if
possible, between nonlinear deterministic or linear sto-
chastic (or Gaussian) behaviour [31] (see also section 4).

Despite initial expectations, most statistical measures
may not be adequate for signal processing in the context of
nonlinear dynamics. For example broad band power spec-
tra with superimposed peaks have often been associated
with chaotic dynamics. This conclusion is often premature
because similar power spectra can also be produced by
noisy signals [8, 20].

Nevertheless, given that the dynamical properties of a
system are defined in phase spaces, it is also helpful when
analysing experimental data to start investigations by con-
structing a phase description of the phenomenon under
study.

3.1. Reconstruction of the phase plane and embedding

Since a time series consists of repeated measurements of
a single variable, the problem is to establish multidimen-
sional phase spaces without knowing in advance the
number of degrees of freedom that need to be represented,
i.e. the number of variables of the system. This difficulty
can be bypassed because even for a phenomenon that
comprises several dimensions, the time series involving a
single variable can be sufficient to determine its full dynam-
ics [14, 32]. The procedure used in practice differs accord-
ing to whether one is dealing with a continuous or with a
discrete time series.

782

P. Faure, H. Korn / C.R. Acad. Sci. Paris, Sciences de la vie / Life Sciences 324 (2001) 773–793



In the case of a continuous signal the experimentally
recorded time series is split into successive segments using
the method of delays (figure 9A1-A2). Successive seg-
ments can then be used to obtain a multidimensional
embedding space in which the reconstructed dynamics
are geometrically similar to the original ones.

Briefly, the measured time series is divided at equal time
intervals h into sequences of measurements V0, V1, V2,...
and a three dimensional space can be reconstructed by
plotting (Vt, Vt–τ, Vt–2τ).

Similarly, to embed the time series in an m-dimensional
space, one plots

V = � Vt, Vt + τ, Vt + 2τ, ..., Vt + � m − 1 �τ � (7)

where m is the embedding dimension and τ the embed-
ding lag. Mathematical definitions and optimal conditions
for finding appropriate embedding dimensions and time
lags can be found in numerous reports (for example see
[29]).

If the signal is discontinuous (spike trains are typical
examples of such discrete time series – see [33]) it is
possible to display the relationship between successive
events or time intervals (In versus In+1) with the help of a
return plot (figure 9B1-B2). The resulting scatter plots, also
named first return plots or Poincaré maps (given their
analogies with the Poincaré sections described above) are
fundamental for studies of biological data, particularly of
nerve cell dynamics.

3.2. Characterization of chaos

When dealing with natural systems, it is often problem-
atic to assess chaotic dynamics: in particular, discriminat-
ing between such systems and noisy data can be difficult.
Consequently many claims for chaos in biology are sub-
ject to skepticism [34]. For example the Lyapunov expo-
nent, which is positive in a chaotic time series, may also be
positive for some forms of periodic oscillations or in time
series contaminated with noise [35].

Consequently, numerous methods have been proposed
to quantify naturally occurring data. All of them are based
on the calculation of the proximity of points of nearby
trajectories lying in a given sphere or volume of radius e,
and of their divergence with time (figure 10).

These measurements can be made in phase spaces or in
so-called recurrence plots specifically designed to locate
recurring patterns and to reveal dynamic behaviours pos-
sibly hidden in non-stationary biological signals [27, 36].

3.2.1. Recurrence plots

Recurrence plots are so called because they depict how
the reconstructed trajectory recurs, or repeats itself. They
distinguish patterns of activity with respect to the organi-
zation of the plots along diagonal lines. Thus they provide
a useful framework for visualizing the time evolution of a
system and for discerning subtle changes or drifts in dynam-
ics [36] as, for example in the case of spontaneously
occurring synaptic signals in central neurons [37].

Figure 9. Reconstruction of phase spaces with the delay method. (A1-A2) Case of a continuous signal, as for example the recording of membrane
potential, V. (A1) The time series is subdivided into two sequences of measurements of the same length N (here equal to 100 points). Their starting
point is shifted by the time lag τ. (A2) The trajectory in a two dimensional phase space is obtained by plotting, for each point of the time series, Vt

against Vt+τ. (B1-B2) In the case of a discrete signal, such as time intervals between action potentials in a spike train (B1), the same procedure is
applied to time intervals I1, I2...IN (B2).
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Let X(i) be the ith point on an orbit describing the system
in a d-dimensional space (figure 11A). Recurrence plots
are then N * N arrays in which a dot is placed at (i, j)
whenever X(i) is close to X(j), i.e. within resolution e.
Given a voltage value V(i) at time i∆t, the d-dimensional
signal X(i) can be obtained using the time delay method
X(i) = (Vi, Vi+τ, ..., Vi+(m–1)τ), where m and τ are the embed-
ding dimension and lag, respectively. Each matrix con-
tains N2 locations, where N is the number of vectors X(i). A
dot is plotted at each point (i, j) whenever X(i) and X(j) are
located within a given radius, e (figure 11B).

Figure 11 (C1-C3) illustrates the resulting plots and
exemplifies the typical visual aspect of the most com-
monly encountered classical dynamics.

3.2.2. Specific measures

Several quantification methods based on the analysis of
the diagonal segments of recurrence plots have been
described [38, 39]. They are aimed at assessing the degree
of ‘determinism’ of the studied system, the term determin-
ism meaning the extent to which future events are causally
specified by past events [20].

These measures include:
– The correlation integral, C(e) which takes into account
the fact that the total number of dots in the plot tells us how
many times the trajectory came within distance e of a
previous value. Then,

C� e � =
number of times �Xi − Xj� ≤ e

N� N − 1 �
(8)

– The percentage of determinism, %det., indicates the
percentage of points included in diagonal segments of a
defined minimal length (figure 12A).

Faure and Korn [40] have shown that the lengths of the
diagonal line segments are expomentially distributed (fig-
ure 12B). The slope of this distribution, µ, is easily com-
puted and it provides a robust estimate of the Kolmogor-
ov–Sinai entropy (see also [41]).

These calculations are called ‘coarse grained’ because
they involve only one resolution of e and e that remains the
same for every embedding dimension. Therefore they are
mostly used to compare the evolution of various time
series, as will be further detailed below. Conversely, invari-
ants such as entropy (figure 12C) or fractal dimension,
which identify more specifically the nature of the dynam-
ics (i.e. periodic, chaotic, or random), are estimated at
mathematical limits, as m → ∞ and e → 0. Such measures
require several successive embedding procedures, with
decreasing values of e.

In particular, the behaviour of the correlation integral
C(e) can be calculated as e becomes progressively smaller.
This technique was introduced by Grassberger and Pro-
caccia [42] and it gives access to the correlation dimen-
sion, which has been, until recently, one of the most
fundamental quantities used both to i) analyse chaotic
time series and ii) look for attractors of chaotic systems
since there is a close relationship between the correlation
integral and the fractal dimension [42].

Specifically, for a given embedding dimension, and as e
gets smaller,

Cm� e � = eν (9)

where υ, the correlation dimension, gives a good estimate
of the fractal dimension of the attractor, which can be
written as,

lim
m → ∞

ν = D (10)

The various steps of this procedure are illustrated in
figure 13.

This method is however liable to misinterpretations and
criticism [43], for example when used to clarify the tem-
poral structure of experimental data.

4. Is chaos the most critical issue?

In addition to stimulating the curiosity of both scientists
and the public by extending greatly the domains of nature
that could be subjected to deterministic analysis, the dis-
covery of chaos theory raised considerable expectations in
neuroscience as in many other scientific disciplines. The
hopes were, and still are for a large part, that understand-
ing the sources of seemingly randomness of complex brain
functions and behaviour, and unraveling their underlying
(and simpler) neuronal mechanisms, had become attain-
able objectives. But in practice things did not turn out to be
that easy, primarily for technical reasons: the signature of
chaos, i.e. invariance of something observable, is far from
being robust to noise and to small sample sizes. Further

Figure 10. Computation of invariants in a dynamical flow. Since the
trajectories of a deterministic system can visit, at different times, the
same regions of the phase space, most of the invariants reflect the
density of nearby (recurrent) points and their divergence. This density
and its changes are assessed using spheres of a varying radius e,
centered on a point of reference (open circles).
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more, assessment of ‘true’ chaos requires sophisticated
and painstaking quantification procedures, the results of
which are generally far less rigorous and therefore less
convincing with biological data than those obtained with
mathematical models or stable physical systems. As a
consequence, the least ambiguous criterion for assessing
chaos in the nervous system is, most often, the identifica-
tion of a bifurcation scenario. As will be shown later (in
part II of this series, in preparation) several groups have
presented unambiguous bifurcations at the cellular level
with the analysis of experimentally observed spike trains
complemented by computational studies (see for example
[44–46]). Results with a Hindmarsh and Rose model
obtained during an extensive study of central inhibitory
interneurons recorded by ourselves in the brain of a fish
[47] are shown in figure 14 which illustrates bifurcations
of spike train discharges induced by progressively decreas-
ing currents ‘injected’ into mimicked cells.

Neurobiologists have become gradually more interested
in practical issues such as the comparisons of dynamics of
neuronal assemblies, and therefore of time series, in vari-
ous experimental or physiological conditions. With these
new, and perhaps less ambitious expectations, measures
of nonlinearity centered on the studies of coarse grained
quantities, which can be defined on intermediates length
scales [31, 46] have been designed and often adapted to
specific experimental material and objectives.

4.1. Methods related to invariants

Finite length scale versions of invariants such as the
correlation dimension, Lyapunov exponent and Kolmog-
orov entropy (obtained with a given e) and the embedding
dimension (m) are useful for comparative purposes. For
example the correlation integral obtained at a single reso-
lution e and with a single embedding can already be used
to quantify the distribution of all points in the phase space.

Figure 11. Visualization of dynamics with recurrence plots. (A-B) Construction of a recurrence plot. Points j located within a distance e of points
i in the phase space shown in (A) are ranked in the ordinate of a matrix (B) in which points i are ordered, in sequence, in the horizontal coordinate.
(C1-C3) Appearance of typical reconstructed trajectories. (C1) Periodic signal, with parallel stripes at 45°, separated by a constant distance in both
directions. (C2) Random signal with dots filling the space and lacking a specific pattern. (C3) For a chaotic time series, there are clusters of dots
interrupted by interspersed short periodic stripes.
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The main idea behind this approach is that such a distri-
bution is more closely clustered in a dynamical system
than in a random one. The one percent radius, which is the
value of (e) such that the correlation integral is equal to
0.01 % [48], or the maximum likelihood estimators [49]
are examples of such measures. Similarly, families of
statistics which measure the rate of variation of informa-
tion in time series have been developed. These are for
example, the so-called approximate entropy [50], the
generalized redundancy information [51] or the coarse
grained entropy rates [52].

4.2. Predictability

Since chaotic trajectories are generated by deterministic
equations, it should be possible to predict the evolution of
their dynamics, at least in a proximate future. The basic
notion is that determinism will cause identical present
states to evolve similarly in the future (this is the method of
‘analogues’ of Lorenz [53]). Therefore, in order to make
predictions from a given point, one has, again, simply to
form a neighbourhood with a fixed radius e or a constant

number of points. The prediction is then provided by the
average of the coordinates, in the phase space, of all the
points belonging to this neighbourhood. This average can
be calculated with the help of various linear or nonlinear
fitting functions (see [31, 54] for reviews).

For instance, Sugihara and May [55] split the time series
into two parts. The first part is used to determine the local
properties of the trajectory. These properties then serve as
a template to predict the evolution of points in the second
part and to examine the degree of correlation between the
predicted and observed results. An average error between
predicted and observed values can also be employed [56].

Nonlinear forecasting has been successfully achieved in
the nervous system to demonstrate determinism in spike
trains [57, 58] but with averages rather than individual
predictions. Yet, individual predictions are also possible as
documented by figure 15 which was obtained during the
already mentioned study of the mode of firing of inhibitory
interneurons in the teleost hindbrain (Faure and Korn, in
preparation).

Figure 12. Quantification of determinism on recurrence plots. (A) Plot obtained from a chaotic time series (N points) embedded in a
two-dimensional phase space. (Inset) Enlargement of the boxed area, with diagonal line segments of various length, L. (B) (Left) Histogram of the
number Ne(L) of line segments of length L, as they can be counted in the recurrence plot shown in (A). (C) Expected variations of µ versus e for
chaotic data without and with added noise, and for stochastic time series; for the latter the computed plot of µ(e) is curved (arrow). Note that as the
noise level increases the flat component of µ(e), which indicates chaos, is interrupted by an upward swing. Therefore, for a given level of noise ediv,
the convergence of µ towards the Kolmogorov-Sinai entropy (K), can be only inferred by extrapolating the computed curve starting at the second
inflection (crossed arrow) (modified from [40]).
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4.3. Unstable periodic orbits

An alternative to conventional measures of chaos is to
search for geometric figures called unstable periodic orbits
(UPOs) in the reconstructed phase space or in return
maps. A Poincaré section across an attractor (figure 16A)
captures an infinite number of UPOs which constitute the
skeleton of chaotic systems [59, 60] and deterministic
trajectories wander endlessly around them (see also [61]).
Before describing UPOs it is essential to remember that

periodic intervals are revealed in return maps as intersec-
tions with the line of identity In = In+1. Chaotic trajectories
tend to approach such periodic states but because of their
instability they quickly escape them.

Therefore, in return maps (figure 16B) each UPO is
made by a double sequence of points. The first sequence
approaches a given fixed point on the identity line along a
‘stable’ manifold (which is not necessarily a straight line,
see [62]), with ever decreasing separations. It is followed
by a second series of points, departing from the same fixed
point at ever increasing distances, along an ‘unstable’
direction and according to well defined and strict math-
ematical rules [63].

UPOs centered around the identity line In = In+1 corre-
spond to period 1 orbits but in dynamical time series there
is a hierarchy of orbits with increasing periodicities, i.e.
period 2, 3 and so on... orbits. These are pairs of points
with reflection symmetry across the diagonal (figure 16C),
triplets of points with triangular symmetry, and so on...
[61]. Periodic orbits have been observed in several neu-
ronal systems including crayfish photoreceptors [63], the
hippocampus of vertebrates [61] and, as shown in figure
16D, in teleost Mauthner cells [37].

The complex geometry of UPOs corresponds well to the
bifurcation scenario represented in figure 7 which also
explains why, in the chaotic state, there is an infinity of
such orbits. It is important to recognize that the instability
reflected by UPOs could paradoxically become an advan-
tage for the control of chaotic systems by external pertur-
bations (see section 5.2).

4.4. Complexity and symbolic analysis

An extreme coarse grained approach called symbolic
dynamics consists in encoding the time series as a string of
symbols. This procedure results in a severe reduction of
available information but it may prove to be useful if the
data are contaminated by high noise levels. It can also be
used to assess the amount of information carried for
example by spike trains.

There are several ways [64, 65] to determine the com-
plexity C(x) of a time series, which is the size of its
minimum representation, when expressed in a chosen
vocabulary.

For example, consider the case of a binary sequence x.

x = 101101011010001001

The purpose is to reduce the message, according to its
regularities, into a sequence constructed with the smallest
possible number of symbols. Then, if a = 01 is repeated 6
times in the series the message becomes

x = 1a1aa1a00a0a

This sequence exhibits three sequences of 1a. If b = 1a,
thus:

x = bbab00a0a

Figure 13. Calculation of the correlation dimension. (A) The corre-
lation integral is computed for various resolutions of e (e1, e2, e3) in
the phase space which contains in this example a Henon attractor
(the self-similarity of which is illustrated in the inset by the enlarge-
ment of the boxed area of the figure). (B) Log-log plot of the correla-
tion integrals (ordinate) as a function of the radius e. The correlation
dimension ν is the slope of the linear part of the plot. (C) Plot of the
measured dimension ν (ordinate) as a function of the embedding
dimension m (abscissa). Note that ν converges to a constant value, or
diverges, for chaotic or noisy time series, respectively.
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which becomes

x = b2 ab02 a0a = m

As explained in details by Rapp [65] it is necessary to
assign a quantitative measure to the amount of information
encoded in such a measure. Specifically, the size of this
representation is determined by applying the following
rules. Each symbol in the sequence contributes a value of
1 and exponentials add logarithmically. For example, in
the final reduction above, seven symbols appear in m and
the exponent 2 appears twice. Thus m contributes
7 + 2 log2 2 and the symbols a and b each contribute 2.
Then

C� x � = �7 + 2 log2 2 + 2 + 2 � = 13

which is less than 18, the length of the original sequence.
The compression can be more dramatic. For a message of
a given length the lowest complexity is obtained when
there is a single symbol: an estimate of 22 is computed if it
is repeated 1000 times (the logic being that a appears 1000
times, b = aa appears 500 times and so on..).

The values of C(x) are low in periodic systems, interme-
diate for deterministic behaviour, and high for complete
randomness. An important and related measure is the
so-called algorithmic complexity which is the length
(expressed in bits) of the shortest computer program that
can reproduce a sequence. Thus the algorithmic complex-
ity of a periodic time series is small since it needs only to
specify the pattern that repeats itself, and an instruction to
replicate that pattern. Conversely a time series can be
defined as random when its description requires an algo-
rithm that is as long as the sequence itself ([66], see also
[67]).

5. Testing and controlling dynamical
systems

Systems with many degrees of freedom are particularly
difficult to study with nonlinear tools even if multiple
channels of information (such as multiple recordings) are
available. The dynamics of the brain represents an extreme
challenge because the number of neurons and synapses in
vertebrates is so high, particularly in man, their connec-
tions are widespread throughout the nervous system, and
they constantly interact with their environment. Thus, and
for the reasons described in the introduction to section 3 of
this paper, experimental data such as recordings from
nerve cells and axons are most often time series that
comprise mixtures of nonlinear deterministic and stochas-
tic signals.

5.1. Chaos versus chance: Surrogate data testing

The word chaos has been equated to randomness by
several authors, including Prigogine and Stengers [1] and
Ford [68, 69]. On the other hand Lorentz [30] insists that
the current use of the term chaos refers to processes that
only ‘appear’ to proceed according to chance although
their behaviour is determined by precise laws. He then
includes, in a “more liberal concept of chaos”, processes
with some randomness, provided that they would exhibit
similar behaviour if the randomness could be removed.
He goes on to consider the suggestion that chaos is so
ubiquitous that all the phenomena described as behaving
randomly should be recognized instead as being chaotic
“a question that Poincaré asked in his essay on chance”.
This concern is justified by examples of particular
sequences obtained with logistic maps, the high algorith

Figure 14. Period-doubling scheme as a function of decreasing stimulating current. (A1-A2) Membrane potential of a modeled interneuron firing
in a 1, 2 or 4 cycle mode (A1 top to bottom) and in chaotic (A2) modes. (The basic intervals between spikes are indicated above each trace). (B1)
Return map of the chaotic regime with successive iterates around a fixed point.
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mic complexity of which makes them equivalent to ran-
dom sequences [24]. Also, if many weakly coupled degrees
of freedom are active, their evolution may often be aver-
aged to quantities that are to a first approximation, Gaus-
sian random variables (see [31, 70]). In the light of our
present knowledge two separate issues must be addressed.

First, is randomness a special case of chaos? For dynami-
cal systems, the answer turns on the concept of dimension
which, is i) the number of distinct dynamical variables in
the equation, or ii) the minimum number of dimensions
necessary to depict the behaviour of empiric data in a
phase space. Within this restricted domain, a random
process has an infinite number of dimensions and can be
considered as being the limiting case of a finite chaotic
system.

Second, how can one distinguish between chaotic and
random signals? A major difficulty in the analysis of natural
and biological systems is the question: is the randomness
observed in a time series only apparent (and the conse-
quence of true nonlinear determinism with structural insta-
bility), or is it real (and produced by random inputs and/or
statistical fluctuations in the parameters)? As we have seen
(section 3.1) there are methods such as embedding to

determine the number of active degrees of freedom but
these methods can fail. A more sophisticated way to
address this problem is to test the significance of the
measures (entropy, dimension,...) by redoing calculations
with ‘surrogate’ data [71]. For this, data consistent with a
null hypothesis, called surrogate data, are created [71, 19]
by randomly reordering the original time series, but keep-
ing some of their original statistical properties (such as the
mean, variance, or the Fourier spectrum). Also, a null
hypothesis is established against which the data will be
tested (the main idea being to reject this hypothesis). The
null hypothesis can be that the original signal is indistin-
guishable i) from a random variable (algorithm zero or
random shuffle surrogates), ii) from a linearly filtered ran-
dom variable (algorithm one, or random phase and Fourier
transform surrogates), and iii) from a linearly filtered ran-
dom variable that has been transformed by a static mono-
tone nonlinearity (algorithm two or Gaussian scale surro-
gates). The level of significance that can be accepted for
rejecting the null hypothesis must also be specified.

A measure M is then applied to the original time series
giving the result MOrig. The same measure is applied to the
surrogate data sets. Let <Msurr> denote the average value of

Figure 15. Short-term predictability of a neuronal discharge pattern. (A) Continuous spontaneous activity recorded in vivo from an identified
inhibitory interneuron which was presynaptic to a teleost Mauthner cell. (B) Enlarged and schematized segment indicated in (A) by a bracket,
showing the accuracy of predictions obtained with the average of twenty closest neighbors in the phase space constructed with all preceding data
points (see text). The observed and predicted spikes are represented by solid and dashed vertical bars, respectively. Successes in forecasting with
errors less than 20 % (delineated by brackets below each action potential) are indicated by circles. Note one false prediction, pointed out by an
arrow (Faure and Korn, unpublished data).
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M obtained with surrogates. If <Msurr> is significantly
different from MOrig, then the null hypothesis can be
rejected.

Like all statistical procedures the method of surrogate
data can be misapplied. In particular false positive rejec-
tions of the null hypothesis are not uncommon [72–74].
Also, it is possible that the null hypothesis is not rejected
because the signal was generated by a finite dimensional
system that was large enough to make the time series
indistinguishable from noise, at least for the specific case
of the applied measure.

Precautions for interpreting the different surrogates and
their possible limitations are considered in Schreiber and
Schmitz [75].

5.2. Stabilizing chaos

A major advantage of chaotic systems over stochastic
processes is that their extreme sensitivity can be used to

direct them rapidly towards a desired state using minimal
perturbations. Viewed in this context the unpredictable
behaviour of chaotic systems becomes an advantage rather
than an undesirable ‘noisy’ disturbance. The basic idea is
that a chaotic system explores a large region of a state
space. This region contains many unstable fixed points (or
unstable periodic orbits). Using a weak control signal, it is
possible to force the system to follow closely any one of
these numerous orbits and to obtain, thereby, large ben-
eficial changes in the long-term behaviour at least as long
as the control is maintained. Thus one can select a given
behaviour from an infinite variety of behaviours and, if
necessary, switch at will between them.

This type of adaptive control was first proposed, on a
theoretical basis, by Mackey and Glass [76] who sought to
demonstrate, with bifurcation schemes, that there is a
large class of functional disturbances (respiratory and
hematopoietic ones were used as examples) that can be

Figure 16. Unstable periodic orbits. (A) Poincaré section (S) across a Rössler attractor with a schematic presentation of an unstable period-1 orbit
(thick line). (B) Unstable period-1 orbit visualized on the Poincaré section, with successive points that converge into, and diverge from, the unstable
fixed point labeled 2, along a stable (st) and unstable (unst) manifold, respectively (the sequence of events is as numbered). (C) Schematic
representation of a period-2 orbit with a sequence of three points that alternate across the identity line. (D) Return map obtained from an actual
series of 1 154 successive synaptic events (shaded points) recorded intracellularly from a teleost Mauthner cell. Note that five unstable periodic
orbits were detected in this time series (modified from [47]).
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characterized by the abnormal operation of simple control
parameters and that these parameters can be tuned for
therapeutic purposes.

Since key parameters that govern behaviour in most
natural phenomena are unknown, a method first described
by Ott, Grebogi and Yorke (OGY, [77]) has been adopted
for most theoretical speculation and in many laboratories.
This method is model-independent and does not require
prior knowledge of the system’s dynamics. For this
approach the system’s behaviour itself is used to ‘learn’
from data how to identify and select a given unstable
periodic orbit and what kind of perturbation is necessary
to stabilize the system on that orbit. Figure 17 illustrates
how this strategy can help to reestablish a regularly oscil-
lating output in an arrhythmic, ouabain-treated rabbit
heart.

The OGY approach has been used successfully to con-
trol simple magnetic systems, lasers and nonlinear optics,
chemical reactions, electronic circuits, jumps in convec-
tive fluids and thermodynamics (ref in [78–81]).

It is also important to note that the OGY technique has
been extended to high dimensional attractors [82]. Other
methods for controlling chaos are described in Bocaletti et
al. [83].

To date, a successful control of biological determinist
dynamics has only been reported in the isolated heart of
the rabbit [84] and in epileptic hippocampal slices of the
rat [85]. These results are however of potential impor-
tance: it has been proposed that abnormalities of physi-
ological rhythms, ranging from differing periodicities to
irregular ‘noise-like’ phenomena, define a group of
‘dynamical diseases’ of the heart, of blood cells, of respi-
ration, of locomotion and motor coordination [86].
Whether such is the case remains an exciting challenge for
future work.
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Figure 17. Strategy for controlling chaos. (A-B) Recordings of rabbit cardiac action potentials in a control situation (regular intervals, in A) and in
presence of ouabain, leading to an aperiodic pattern (compatible with chaos) in (B). (C) Principle of the control using an unstable periodic orbit with
its stable (St.) and unstable (Unst.) manifolds, and with a fixed point y*. A point yn in the attractor close to the unstable fixed point which, next, would
move to ỹn + 1 (dashed arrow) is forced to lie on the stable manifold at yn+1 by an electrical stimulus (Ω). (Modified form Garfinkel et al., 1992). (D)
Plot of interbeat intervals (ordinates) versus beat number (abscissa) during the aperiodic arrhythmia and its control obtained by delivering electrical
stimuli that stabilize chaos on an unstable period-3 orbit.
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